參考文獻 |
1. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical reviews 2013, 113, 5364-5457.
2. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chemical reviews 2014, 114, 11636-11682.
3. Su, S.; Huang, Z.; NuLi, Y.; Tuerxun, F.; Yang, J.; Wang, J. A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chemical communications 2015, 51, 2641-2644.
4. Su, S.; NuLi, Y.; Huang, Z.; Miao, Q.; Yang, J.; Wang, J. A High-Performance Rechargeable Mg2+/Li+ Hybrid Battery Using One-Dimensional Mesoporous TiO2 (B) Nanoflakes as the Cathode. ACS applied materials & interfaces 2016, 8, 7111-7117.
5. Xia, T.; Zhang, W.; Wang, Z.; Zhang, Y.; Song, X.; Murowchick, J.; Battaglia, V.; Liu, G.; Chen, X. Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 2014, 6, 109-118.
6. Jiang, L.; Lu, X.; Xie, C.; Wan, G.; Zhang, H.; Youhong, T. Flexible, free-standing TiO2–graphene–polypyrrole composite films as electrodes for supercapacitors. The Journal of Physical Chemistry C 2015, 119, 3903-3910.
7. Naoi, K.; Naoi, W.; Aoyagi, S.; Miyamoto, J.; Kamino, T. New generation “nanohybrid supercapacitor”. Accounts of chemical research 2012, 46, 1075-1083.
8. Chen, X.; Liu, L.; Huang, F. Black titanium dioxide (TiO2) nanomaterials. Chemical Society reviews 2015, 44, 1861-1885.
9. Myung, S.-T.; Kikuchi, M.; Yoon, C. S.; Yashiro, H.; Kim, S.-J.; Sun, Y.-K.; Scrosati, B. Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy & Environmental Science 2013, 6, 2609.
10. Delmas, C.; Braconnier, J.-J.; Fouassier, C.; Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ionics 1981, 3, 165-169.
11. Wang, L.; Lu, Y.; Liu, J.; Xu, M.; Cheng, J.; Zhang, D.; Goodenough, J. B. A Superior Low‐Cost Cathode for a Na‐Ion Battery. Angewandte Chemie International Edition 2013, 52, 1964-1967.
12. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1, 16013-16023.
13. D. Aurbach, Z. L., A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich & E. Levi. Nature-Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724-727.
14. Garche, J.; Dyer, C. K.; Moseley, P. T.; Ogumi, Z.; Rand, D. A.; Scrosati, B.: Encyclopedia of electrochemical power sources; Newnes, 2013.
15. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chemical Society reviews 2015, 44, 2060-2086.
16. Mizrahi, O.; Amir, N.; Pollak, E.; Chusid, O.; Marks, V.; Gottlieb, H.; Larush, L.; Zinigrad, E.; Aurbach, D. Electrolyte Solutions with a Wide Electrochemical Window for Rechargeable Magnesium Batteries. Journal of The Electrochemical Society 2008, 155, A103-A109.
17. Cho, J. H.; Aykol, M.; Kim, S.; Ha, J. H.; Wolverton, C.; Chung, K. Y.; Kim, K. B.; Cho, B. W. Controlling the intercalation chemistry to design high-performance dual-salt hybrid rechargeable batteries. Journal of the American Chemical Society 2014, 136, 16116-16119.
18. Gofer, Y.; Chusid, O.; Gizbar, H.; Viestfrid, Y.; Gottlieb, H. E.; Marks, V.; Aurbach, D. Improved Electrolyte Solutions for Rechargeable Magnesium Batteries. Electrochemical and Solid-State Letters 2006, 9, A257-A260.
19. Shao, Y.; Liu, T.; Li, G.; Gu, M.; Nie, Z.; Engelhard, M.; Xiao, J.; Lv, D.; Wang, C.; Zhang, J. G.; Liu, J. Coordination chemistry in magnesium battery electrolytes: how ligands affect their performance. Scientific reports 2013, 3, 3130.
20. Gao, T.; Han, F.; Zhu, Y.; Suo, L.; Luo, C.; Xu, K.; Wang, C. Hybrid Mg2+/Li+ Battery with Long Cycle Life and High Rate Capability. Advanced Energy Materials 2015, 5.
21. Yoo, H. D.; Liang, Y.; Li, Y.; Yao, Y. High Areal Capacity Hybrid Magnesium–Lithium-Ion Battery with 99.9% Coulombic Efficiency for Large-Scale Energy Storage. ACS applied materials & interfaces 2015, 7, 7001-7007.
22. Yagi, S.; Ichitsubo, T.; Shirai, Y.; Yanai, S.; Doi, T.; Murase, K.; Matsubara, E. A concept of dual-salt polyvalent-metal storage battery. Journal of Materials Chemistry A 2014, 2, 1144-1149.
23. Nelson, E. G.; Brody, S. I.; Kampf, J. W.; Bartlett, B. M. A magnesium tetraphenylaluminate battery electrolyte exhibits a wide electrochemical potential window and reduces stainless steel corrosion. Journal of Materials Chemistry A 2014, 2, 18194-18198.
24. Wu, N.; Yang, Z. Z.; Yao, H. R.; Yin, Y. X.; Gu, L.; Guo, Y. G. Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angewandte Chemie 2015, 54, 5757-5761.
25. Zhang, Y.; Xie, J.; Han, Y.; Li, C. Dual‐Salt Mg‐Based Batteries with Conversion Cathodes. Advanced Functional Materials 2015, 25, 7300-7308.
26. Wagemaker, M.; Kentgens, A.; Mulder, F. Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 2002, 418, 397-399.
27. Yang, Z.; Choi, D.; Kerisit, S.; Rosso, K. M.; Wang, D.; Zhang, J.; Graff, G.; Liu, J. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. Journal of Power Sources 2009, 192, 588-598.
28. Kubiak, P.; Pfanzelt, M.; Geserick, J.; Hörmann, U.; Hüsing, N.; Kaiser, U.; Wohlfahrt-Mehrens, M. Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries. Journal of Power Sources 2009, 194, 1099-1104.
29. Marinaro, M.; Pfanzelt, M.; Kubiak, P.; Marassi, R.; Wohlfahrt-Mehrens, M. Low temperature behaviour of TiO2 rutile as negative electrode material for lithium-ion batteries. Journal of Power Sources 2011, 196, 9825-9829.
30. Pfanzelt, M.; Kubiak, P.; Fleischhammer, M.; Wohlfahrt-Mehrens, M. TiO2 rutile—an alternative anode material for safe lithium-ion batteries. Journal of Power Sources 2011, 196, 6815-6821.
31. Pfanzelt, M.; Kubiak, P.; Wohlfahrt-Mehrens, M. Nanosized TiO2 rutile with high capacity and excellent rate capability. Electrochemical and Solid-State Letters 2010, 13, A91-A94.
32. Xiong, H.; Slater, M. D.; Balasubramanian, M.; Johnson, C. S.; Rajh, T. Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries. The Journal of Physical Chemistry Letters 2011, 2, 2560-2565.
33. Wu, L.; Bresser, D.; Buchholz, D.; Giffin, G. A.; Castro, C. R.; Ochel, A.; Passerini, S. Unfolding the Mechanism of Sodium Insertion in Anatase TiO2 Nanoparticles. Advanced Energy Materials 2014, 1401142
34. Huang, J. P.; Yuan, D. D.; Zhang, H. Z.; Cao, Y. L.; Li, G. R.; Yang, H. X.; Gao, X. P. Electrochemical sodium storage of TiO2 (B) nanotubes for sodium ion batteries. RSC Advances 2013, 3, 12593-12597.
35. Chen, C.; Wen, Y.; Hu, X.; Ji, X.; Yan, M.; Mai, L.; Hu, P.; Shan, B.; Huang, Y. Na(+) intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nature communications 2015, 6:6929.
36. Usui, H.; Yoshioka, S.; Wasada, K.; Shimizu, M.; Sakaguchi, H. Nb-doped rutile TiO2: a potential anode material for Na-ion battery. ACS applied materials & interfaces 2015, 7, 6567-6573.
37. Li, J.; Wang, Z.; Zhao, A.; Wang, J.; Song, Y.; Sham, T.-K. Nanoscale Clarification of the Electronic Structure and Optical Properties of TiO2 Nanowire with an Impurity Phase upon Sodium Intercalation. The Journal of Physical Chemistry C 2015, 119, 17848-17856.
38. Xu, Y.; Lotfabad, E. M.; Wang, H.; Farbod, B.; Xu, Z.; Kohandehghan, A.; Mitlin, D. Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chemical communications 2013, 49, 8973-8975.
39. Bi, Z.; Paranthaman, M. P.; Menchhofer, P. A.; Dehoff, R. R.; Bridges, C. A.; Chi, M.; Guo, B.; Sun, X.-G.; Dai, S. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. Journal of Power Sources 2013, 222, 461-466.
40. Kim, K. T.; Ali, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y. K.; Lu, J.; Amine, K.; Myung, S. T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano letters 2014, 14, 416-422.
41. Oh, S. M.; Hwang, J. Y.; Yoon, C. S.; Lu, J.; Amine, K.; Belharouak, I.; Sun, Y. K. High electrochemical performances of microsphere C-TiO2 anode for sodium-ion battery. ACS applied materials & interfaces 2014, 6, 11295-11301.
42. Liu, H.; Cao, K.; Xu, X.; Jiao, L.; Wang, Y.; Yuan, H. Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries. ACS applied materials & interfaces 2015, 7, 11239-11245.
43. Xu, Y.; Zhou, M.; Wen, L.; Wang, C.; Zhao, H.; Mi, Y.; Liang, L.; Fu, Q.; Wu, M.; Lei, Y. Highly Ordered Three-Dimensional Ni-TiO2 Nanoarrays as Sodium Ion Battery Anodes. Chemistry of Materials 2015, 27, 4274-4280.
44. Su, D.; Dou, S.; Wang, G. Anatase TiO2: Better Anode Material Than Amorphous and Rutile Phases of TiO2 for Na-Ion Batteries. Chemistry of Materials 2015, 27, 6022-6029.
45. Yang, Y.; Ji, X.; Jing, M.; Hou, H.; Zhu, Y.; Fang, L.; Yang, X.; Chen, Q.; Banks, C. E. Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J. Mater. Chem. A 2015, 3, 5648-5655.
46. Yeo, Y.; Jung, J. W.; Park, K.; Kim, I. D. Graphene-Wrapped Anatase TiO2 Nanofibers as High-Rate and Long-Cycle-Life Anode Material for Sodium Ion Batteries. Scientific reports 2015, 5, 13862.
47. Hong, Z.; Zhou, K.; Huang, Z.; Wei, M. Iso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage. Scientific reports 2015, 5, 11960.
48. Fu, C.; Chen, T.; Qin, W.; Lu, T.; Sun, Z.; Xie, X.; Pan, L. Scalable synthesis and superior performance of TiO2-reduced graphene oxide composite anode for sodium-ion batteries. Ionics 2015, 22, 555-562.
49. Wu, L.; Moretti, A.; Buchholz, D.; Passerini, S.; Bresser, D. Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries. Electrochimica Acta 2016, 203, 109-116.
50. Tahir, M. N.; Oschmann, B.; Buchholz, D.; Dou, X.; Lieberwirth, I.; Panthofer, M.; Tremel, W.; Zentel, R.; Passerini, S. Extraordinary Performance of Carbon-Coated Anatase TiO2 as Sodium-Ion Anode. Adv Energy Mater 2016, 6, 1501489.
51. Chen, J.; Ding, Z.; Wang, C.; Hou, H.; Zhang, Y.; Wang, C.; Zou, G.; Ji, X. Black Anatase Titania with Ultrafast Sodium-Storage Performances Stimulated by Oxygen Vacancies. ACS applied materials & interfaces 2016, 8, 9142-9151.
52. Wu, L.; Bresser, D.; Buchholz, D.; Passerini, S. Nanocrystalline TiO2 (B) as Anode Material for Sodium-Ion Batteries. Journal of the Electrochemical Society 2014, 162, A3052-A3058.
53. Søndergaard, M.; Dalgaard, K. J.; Bøjesen, E. D.; Wonsyld, K.; Dahl, S.; Iversen, B. B. In situ monitoring of TiO2(B)/anatase nanoparticle formation and application in Li-ion and Na-ion batteries. J. Mater. Chem. A 2015, 3, 18667-18674.
54. Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746-750.
55. Lu, J.; Dai, Y.; Jin, H.; Huang, B. Effective increasing of optical absorption and energy conversion efficiency of anatase TiO2 nanocrystals by hydrogenation. Physical chemistry chemical physics : PCCP 2011, 13, 18063-18068.
56. Lu, X.; Wang, G.; Xie, S.; Shi, J.; Li, W.; Tong, Y.; Li, Y. Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays. Chemical communications 2012, 48, 7717-7719.
57. Wang, G.; Ling, Y.; Lu, X.; Qian, F.; Tong, Y.; Zhang, J. Z.; Lordi, V.; Rocha Leao, C.; Li, Y. Computational and Photoelectrochemical Study of Hydrogenated Bismuth Vanadate. The Journal of Physical Chemistry C 2013, 117, 10957-10964.
58. Liu, N.; Schneider, C.; Freitag, D.; Hartmann, M.; Venkatesan, U.; Muller, J.; Spiecker, E.; Schmuki, P. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano letters 2014, 14, 3309-3313.
59. Meng, M.; Wu, X.; Zhu, X.; Zhu, X.; Chu, P. K. Facet cutting and hydrogenation of In2O3 nanowires for enhanced photoelectrochemical water splitting. ACS applied materials & interfaces 2014, 6, 4081-4088.
60. Mettenbörger, A.; Singh, T.; Singh, A. P.; Järvi, T. T.; Moseler, M.; Valldor, M.; Mathur, S. Plasma-chemical reduction of iron oxide photoanodes for efficient solar hydrogen production. International Journal of Hydrogen Energy 2014, 39, 4828-4835.
61. Yang, C.; Zhu, Q.; Lei, T.; Li, H.; Xie, C. The coupled effect of oxygen vacancies and Pt on the photoelectric response of tungsten trioxide films. J. Mater. Chem. C 2014, 2, 9467-9477.
62. Zeng, L.; Song, W.; Li, M.; Zeng, D.; Xie, C. Catalytic oxidation of formaldehyde on surface of H-TiO2/H-C-TiO2 without light illumination at room temperature. Applied Catalysis B: Environmental 2014, 147, 490-498.
63. Li, Y. H.; Liu, P. F.; Pan, L. F.; Wang, H. F.; Yang, Z. Z.; Zheng, L. R.; Hu, P.; Zhao, H. J.; Gu, L.; Yang, H. G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nature communications 2015, 6, 8064.
64. Zhang, T.; Cheng, F.; Du, J.; Hu, Y.; Chen, J. Efficiently Enhancing Oxygen Reduction Electrocatalytic Activity of MnO2 Using Facile Hydrogenation. Advanced Energy Materials 2015, 5, 1400654.
65. Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Gan, J.; Tong, Y.; Li, Y. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano letters 2012, 12, 1690-1696.
66. Pan, X.; Zhao, Y.; Ren, G.; Fan, Z. Highly conductive VO2 treated with hydrogen for supercapacitors. Chemical communications 2013, 49, 3943-3945.
67. Yang, P.; Xiao, X.; Li, Y.; Ding, Y.; Qiang, P.; Tan, X.; Mai, W.; Lin, Z.; Wu, W.; Li, T. Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS nano 2013, 7, 2617-2626.
68. Singh, A. K.; Sarkar, D.; Khan, G. G.; Mandal, K. Hydrogenated NiO nanoblock architecture for high performance pseudocapacitor. ACS applied materials & interfaces 2014, 6, 4684-4692.
69. Wang, F.; Li, Y.; Cheng, Z.; Xu, K.; Zhan, X.; Wang, Z.; He, J. Construction of 3D V2O5/hydrogenated-WO3 nanotrees on tungsten foil for high-performance pseudocapacitors. Physical chemistry chemical physics : PCCP 2014, 16, 12214-12220.
70. Zhu, J.; Huang, L.; Xiao, Y.; Shen, L.; Chen, Q.; Shi, W. Hydrogenated CoOx nanowire@Ni(OH)2 nanosheet core-shell nanostructures for high-performance asymmetric supercapacitors. Nanoscale 2014, 6, 6772-6781.
71. Li, G.; Zhang, Z.; Peng, H.; Chen, K. Mesoporous hydrogenated TiO2 microspheres for high rate capability lithium ion batteries. RSC Advances 2013, 3, 11507.
72. Liu, Y.; Liu, C.; Li, J. Flexible free-standing hydrogen-treated titanium dioxide nanowire arrays as a high performance anode for lithium ion batteries. J. Mater. Chem. A 2014, 2, 15746-15751.
73. Lu, Z.; Yip, C.-T.; Wang, L.; Huang, H.; Zhou, L. Hydrogenated TiO2 Nanotube Arrays as High-Rate Anodes for Lithium-Ion Microbatteries. ChemPlusChem 2012, 77, 991-1000.
74. Qiu, J.; Li, S.; Gray, E.; Liu, H.; Gu, Q.-F.; Sun, C.; Lai, C.; Zhao, H.; Zhang, S. Hydrogenation Synthesis of Blue TiO2 for High-Performance Lithium-Ion Batteries. The Journal of Physical Chemistry C 2014, 118, 8824-8830.
75. Shin, J.-Y.; Joo, J. H.; Samuelis, D.; Maier, J. Oxygen-Deficient TiO2−δ Nanoparticles via Hydrogen Reduction for High Rate Capability Lithium Batteries. Chemistry of Materials 2012, 24, 543-551.
76. Wang, J.; Shen, L.; Nie, P.; Xu, G.; Ding, B.; Fang, S.; Dou, H.; Zhang, X. Synthesis of hydrogenated TiO2–reduced-graphene oxide nanocomposites and their application in high rate lithium ion batteries. Journal of Materials Chemistry A 2014, 2, 9150-9155.
77. Wang, N.; Yue, J.; Chen, L.; Qian, Y.; Yang, J. Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries. ACS applied materials & interfaces 2015, 7, 10348-10355.
78. Xia, T.; Zhang, W.; Li, W.; Oyler, N. A.; Liu, G.; Chen, X. Hydrogenated surface disorder enhances lithium ion battery performance. Nano Energy 2013, 2, 826-835.
79. Xia, T.; Zhang, W.; Murowchick, J.; Liu, G.; Chen, X. Built-in electric field-assisted surface-amorphized nanocrystals for high-rate lithium-ion battery. Nano letters 2013, 13, 5289-5296.
80. Xia, T.; Zhang, W.; Wang, Z.; Zhang, Y.; Song, X.; Murowchick, J.; Battaglia, V.; Liu, G.; Chen, X. Amorphous carbon-coated TiO2 nanocrystals for improved lithium-ion battery and photocatalytic performance. Nano Energy 2014, 6, 109-118.
81. Yan, Y.; Hao, B.; Wang, D.; Chen, G.; Markweg, E.; Albrecht, A.; Schaaf, P. Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles. Journal of Materials Chemistry A 2013, 1, 14507-14513.
82. Zhang, Z.; Zhou, Z.; Nie, S.; Wang, H.; Peng, H.; Li, G.; Chen, K. Flower-like hydrogenated TiO2(B) nanostructures as anode materials for high-performance lithium ion batteries. Journal of Power Sources 2014, 267, 388-393.
83. Zheng, J.; Liu, Y.; Ji, G.; Zhang, P.; Cao, X.; Wang, B.; Zhang, C.; Zhou, X.; Zhu, Y.; Shi, D. Hydrogenated Oxygen-Deficient Blue Anatase as Anode for High-Performance Lithium Batteries. ACS applied materials & interfaces 2015, 7, 23431-23438.
84. Peng, X.; Zhang, X.; Wang, L.; Hu, L.; Cheng, S. H.-S.; Huang, C.; Gao, B.; Ma, F.; Huo, K.; Chu, P. K. Hydrogenated V2O5 Nanosheets for Superior Lithium Storage Properties. Advanced Functional Materials 2016, 26, 784-791.
85. Qiu, J.; Lai, C.; Gray, E.; Li, S.; Qiu, S.; Strounina, E.; Sun, C.; Zhao, H.; Zhang, S. Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries. Journal of Materials Chemistry A 2014, 2, 6353-6358.
86. Liu, L.; Sun, L.; Liu, J.; Xiao, X.; Hu, Z.; Cao, X.; Wang, B.; Liu, X. Enhancing the electrochemical properties of NiFe2O4 anode for lithium ion battery through a simple hydrogenation modification. International Journal of Hydrogen Energy 2014, 39, 11258-11266.
87. Xiao, X.; Peng, Z.; Chen, C.; Zhang, C.; Beidaghi, M.; Yang, Z.; Wu, N.; Huang, Y.; Miao, L.; Gogotsi, Y.; Zhou, J. Freestanding MoO3−x nanobelt/carbon nanotube films for Li-ion intercalation pseudocapacitors. Nano Energy 2014, 9, 355-363.
88. Byeon, A.; Boota, M.; Beidaghi, M.; Aken, K. V.; Lee, J. W.; Gogotsi, Y. Effect of hydrogenation on performance of TiO2(B) nanowire for lithium ion capacitors. Electrochemistry Communications 2015, 60, 199-203.
89. Yuan, C.; Zhu, S.; Cao, H.; Hou, L.; Lin, J. Hierarchical sulfur-impregnated hydrogenated TiO2 mesoporous spheres comprising anatase nanosheets with highly exposed (001) facets for advanced Li-S batteries. Nanotechnology 2016, 27, 045403.
90. Zhang, C.; Yu, H.; Li, Y.; Gao, Y.; Zhao, Y.; Song, W.; Shao, Z.; Yi, B. Supported Noble Metals on Hydrogen‐Treated TiO2 Nanotube Arrays as Highly Ordered Electrodes for Fuel Cells. ChemSusChem 2013, 6, 659-666.
91. Zhu, W. D.; Wang, C. W.; Chen, J. B.; Li, D. S.; Zhou, F.; Zhang, H. L. Enhanced field emission from hydrogenated TiO2 nanotube arrays. Nanotechnology 2012, 23, 455204.
92. Xia, T.; Zhang, C.; Oyler, N. A.; Chen, X. Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. Journal of Materials Research 2014, 29, 2198-2210.
93. Su, T.; Yang, Y.; Na, Y.; Fan, R.; Li, L.; Wei, L.; Yang, B.; Cao, W. An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS applied materials & interfaces 2015, 7, 3754-3763.
94. Balogun, M. S.; Zhu, Y.; Qiu, W.; Luo, Y.; Huang, Y.; Liang, C.; Lu, X.; Tong, Y. Chemically Lithiated TiO2 Heterostructured Nanosheet Anode with Excellent Rate Capability and Long Cycle Life for High-Performance Lithium-Ion Batteries. ACS applied materials & interfaces 2015, 7, 25991-26003.
95. Chen, X.; Liu, L.; Liu, Z.; Marcus, M. A.; Wang, W.-C.; Oyler, N. A.; Grass, M. E.; Mao, B.; Glans, P.-A.; Peter, Y. Y. Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Scientific reports 2013, 3:1510.
96. Xia, T.; Chen, X. Revealing the structural properties of hydrogenated black TiO2 nanocrystals. Journal of Materials Chemistry A 2013, 1, 2983-2989.
97. Sun, C.; Jia, Y.; Yang, X.-H.; Yang, H.-G.; Yao, X.; Lu, G. Q.; Selloni, A.; Smith, S. C. Hydrogen incorporation and storage in well-defined nanocrystals of anatase titanium dioxide. The Journal of Physical Chemistry C 2011, 115, 25590-25594.
98. Liu, N.; Schneider, C.; Freitag, D.; Hartmann, M.; Venkatesan, U.; Müller, J.; Spiecker, E.; Schmuki, P. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano letters 2014, 14, 3309-3313.
99. Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R. C.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano letters 2011, 11, 3026-3033.
100. Wang, Z.; Yang, C.; Lin, T.; Yin, H.; Chen, P.; Wan, D.; Xu, F.; Huang, F.; Lin, J.; Xie, X. H‐Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance. Advanced Functional Materials 2013, 23, 5444-5450.
101. Qiu, B.; Zhang, M.; Wu, L.; Wang, J.; Xia, Y.; Qian, D.; Liu, H.; Hy, S.; Chen, Y.; An, K.; Zhu, Y.; Liu, Z.; Meng, Y. S. Gas-solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nature communications 2016, 7, 12108.
102. Xu, Y.; Zhou, M.; Wang, X.; Wang, C.; Liang, L.; Grote, F.; Wu, M.; Mi, Y.; Lei, Y. Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies. Angewandte Chemie 2015, 54, 8768-8771.
103. Chen, C. L.; Dong, C. L.; Chen, C. H.; Wu, J. W.; Lu, Y. R.; Lin, C. J.; Liou, S. Y.; Tseng, C. M.; Kumar, K.; Wei, D. H.; Guo, J.; Chou, W. C.; Wu, M. K. Electronic properties of free-standing TiO2 nanotube arrays fabricated by electrochemical anodization. Physical chemistry chemical physics : PCCP 2015, 17, 22064-22071.
104. Rudola, A.; Saravanan, K.; Mason, C. W.; Balaya, P. Na2Ti3O7: an intercalation based anode for sodium-ion battery applications. Journal of Materials Chemistry A 2013, 1, 2653-2662.
105. Li, S.; Qiu, J.; Lai, C.; Ling, M.; Zhao, H.; Zhang, S. Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries. Nano Energy 2015, 12, 224-230.
106. Mohtadi, R.; Matsui, M.; Arthur, T. S.; Hwang, S. J. Magnesium borohydride: from hydrogen storage to magnesium battery. Angewandte Chemie International Edition 2012, 51, 9780-9783. |