參考文獻 |
[1] Kerchner GA, Wyss-Coray T (2016) The Role of Aging in Alzheimer’s Disease In Advances in Geroscience Springer, pp. 197-227.
[2] Bukar Maina M, Al-Hilaly YK, Serpell LC (2016) Nuclear Tau and Its Potential Role in Alzheimer’s Disease. Biomolecules 6, 9.
[3] La Rosa LR, Matrone C, Ferraina C, Panico MB, Piccirilli S, Di Certo MG, Strimpakos G, Mercuri NB, Calissano P, D′Amelio M (2013) Age-related changes of hippocampal synaptic plasticity in AβPP-null mice are restored by NGF through p75NTR. J. Alzheimers Dis 33, 265-272.
[4] 台灣失智症協會 (2004) 機構照顧需求之調查 -長期照護機構 失智症患者之盛行率調查」研究報告.
[5] (NIA) NIoA (2015) Bypass Budget Proposal for Fiscal Year 2017—Reaching for a Cure: Alzheimers Disease and Related Dementias Research.
[6] Bredesen DE (2015) Metabolic profiling distinguishes three subtypes of Alzheimer′s disease. Aging (Albany NY) 7, 595.
[7] Oskarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westermark GT (2015) In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. The American journal of pathology 185, 834-846.
[8] Suzanne M, Wands JR (2008) Alzheimer′s disease is type 3 diabetes—evidence reviewed. Journal of diabetes science and technology 2, 1101-1113.
[9] Pisa D, Alonso R, Rábano A, Rodal I, Carrasco L (2015) Different brain regions are infected with fungi in Alzheimer’s disease. Scientific reports 5.
[10] Cacabelos R, Martinez-Bouza R, Carlos Carril J, Fernandez-Novoa L, Lombardi V, Carrera I, Corzo L, McKay A (2012) Genomics and pharmacogenomics of brain disorders. Current pharmaceutical biotechnology 13, 674-725.
[11] Honea RA, Cruchaga C, Perea RD, Saykin AJ, Burns JM, Weinberger DR, Goate AM, Initiative AsDN (2013) Characterizing the role of brain derived neurotrophic factor genetic variation in Alzheimer’s disease neurodegeneration. PloS one 8, e76001.
[12] Phillips NR, Simpkins JW, Roby RK (2014) Mitochondrial DNA deletions in Alzheimer′s brains: A review. Alzheimer′s & Dementia 10, 393-400.
[13] Morán M, Moreno-Lastres D, Marín-Buera L, Arenas J, Martín MA, Ugalde C (2012) Mitochondrial respiratory chain dysfunction: implications in neurodegeneration. Free Radical Biology and Medicine 53, 595-609.
[14] Wang X, Wang W, Li L, Perry G, Lee H-g, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer′s disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1842, 1240-1247.
[15] Manczak M, Park BS, Jung Y, Reddy PH (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease. Neuromolecular medicine 5, 147-162.
[16] Rhein V, Song X, Wiesner A, Ittner LM, Baysang G, Meier F, Ozmen L, Bluethmann H, Dröse S, Brandt U (2009) Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer′s disease mice. Proceedings of the National Academy of Sciences 106, 20057-20062.
[17] Crimins JL, Pooler A, Polydoro M, Luebke JI, Spires-Jones TL (2013) The intersection of amyloid beta and tau in glutamatergic synaptic dysfunction and collapse in Alzheimer′s disease. Ageing research reviews 12, 757-763.
[18] Revett TJ, Baker GB, Jhamandas J, Kar S (2013) Glutamate system, amyloid β peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. Journal of psychiatry & neuroscience: JPN 38, 6.
[19] Kikuchi M, Ogishima S, Mizuno S, Miyashita A, Kuwano R, Nakaya J, Tanaka H (2016) Network-Based Analysis for Uncovering Mechanisms Underlying Alzheimer’s Disease. Systems Biology of Alzheimer′s Disease, 479-491.
[20] Campion D, Pottier C, Nicolas G, Le Guennec K, Rovelet-Lecrux A (2016) Alzheimer disease: modeling an Aβ-centered biological network. Molecular psychiatry.
[21] Ferrari R, Forabosco P, Vandrovcova J, Botía JA, Guelfi S, Warren JD, Momeni P, Weale ME, Ryten M, Hardy J (2016) Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis. Molecular neurodegeneration 11, 1.
[22] Bettencourt C, Forabosco P, Wiethoff S, Heidari M, Johnstone DM, Botía JA, Collingwood JF, Hardy J, Milward EA, Ryten M (2016) Gene co-expression networks shed light into diseases of brain iron accumulation. Neurobiology of disease 87, 59-68.
[23] Harel I, Benayoun BA, Machado B, Singh PP, Hu C-K, Pech MF, Valenzano DR, Zhang E, Sharp SC, Artandi SE (2015) A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell 160, 1013-1026.
[24] Yue H, Yang B, Yang F, Hu XL, Kong FB (2016) Co‑expression network‑based analysis of hippocampal expression data associated with Alzheimer′s disease using a novel algorithm. Experimental and therapeutic medicine 11, 1707-1715.
[25] Reiman EM, Langbaum JB, Tariot PN, Lopera F, Bateman RJ, Morris JC, Sperling RA, Aisen PS, Roses AD, Welsh-Bohmer KA (2015) CAP_advancing the evaluation of preclinical Alzheimer disease treatments. Nature Reviews Neurology.
[26] Hampel H, Schneider LS, Giacobini E, Kivipelto M, Sindi S, Dubois B, Broich K, Nistico R, Aisen PS, Lista S (2015) Advances in the therapy of Alzheimer’s disease: targeting amyloid beta and tau and perspectives for the future. Expert review of neurotherapeutics 15, 83-105.
[27] Giacobini E, Gold G (2013) Alzheimer disease therapy—moving from amyloid-β to tau. Nature Reviews Neurology 9, 677-686.
[28] Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM (2011) NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic acids research 39, D1005-D1010.
[29] Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE (2007) Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nature genetics 39, 17-23.
[30] Sun J, Feng X, Liang D, Duan Y, Lei H (2012) Down-regulation of energy metabolism in Alzheimer′s disease is a protective response of neurons to the microenvironment. Journal of Alzheimer′s Disease 28, 389-402.
[31] Bai Z, Han G, Xie B, Wang J, Song F, Peng X, Lei H (2016) AlzBase: an integrative database for gene dysregulation in Alzheimer’s disease. Molecular neurobiology 53, 310-319.
[32] Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D, Costa J, Fraifeld VE, De Magalhães JoP (2012) Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing. Nucleic acids research, gks1155.
[33] Smyth GK (2005) Limma: linear models for microarray data In Bioinformatics and computational biology solutions using R and Bioconductor Springer, pp. 397-420.
[34] Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003) Summaries of Affymetrix GeneChip probe level data. Nucleic acids research 31, e15-e15.
[35] Irizarry RA, Hobbs B, Collin F, Beazer‐Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4, 249-264.
[36] Wood F (2009) Principal component analysis.
[37] Yeung KY, Ruzzo WL (2001) Principal component analysis for clustering gene expression data. Bioinformatics 17, 763-774.
[38] Prasad TK, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A (2009) Human protein reference database—2009 update. Nucleic acids research 37, D767-D772.
[39] Consortium U (2014) Activities at the universal protein resource (UniProt). Nucleic acids research 42, 7486.
[40] Chung F-H, Lee HH-C, Lee H-C (2013) ToP: a trend-of-disease-progression procedure works well for identifying cancer genes from multi-state cohort gene expression data for human colorectal cancer. PloS one 8, e65683.
[41] Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T (2008) KEGG for linking genomes to life and the environment. Nucleic acids research 36, D480-D484.
[42] Butterfield DA, Hardas SS, Lange MLB (2010) Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer′s disease: many pathways to neurodegeneration. Journal of Alzheimer′s Disease 20, 369-393.
[43] Sunaga K, Takahashi H, Chuang D-M, Ishitani R (1995) Glyceraldehyde-3-phosphate dehydrogenase is over-expressed during apoptotic death of neuronal cultures and is recognized by a monoclonal antibody against amyloid plaques from Alzheimer′s brain. Neuroscience letters 200, 133-136.
[44] Silva PN, Furuya TK, Braga IL, Rasmussen LT, Labio RW, Bertolucci PH, Chen ES, Turecki G, Mechawar N, Payao SL (2014) Analysis of HSPA8 and HSPA9 mRNA expression and promoter methylation in the brain and blood of Alzheimer′s disease patients. Journal of Alzheimer′s disease 38, 165-170.
[45] Cacabelos R, Torrellas C, López-Muñoz F (2014) Epigenomics of Alzheimer′s disease. Journal of Experimental & Clinical Medicine 6, 75-82.
[46] Chiasserini D, van Weering JR, Piersma SR, Pham TV, Malekzadeh A, Teunissen CE, de Wit H, Jiménez CR (2014) Proteomic analysis of cerebrospinal fluid extracellular vesicles: a comprehensive dataset. Journal of proteomics 106, 191-204.
[47] Zhang M, Huang K, Zhang Z, Ji B, Zhu H, Zhou K, Li Y, Yang J, Sun L, Wei Z (2011) Proteome alterations of cortex and hippocampus tissues in mice subjected to vitamin A depletion. The Journal of nutritional biochemistry 22, 1003-1008.
[48] Ding Q, Markesbery WR, Chen Q, Li F, Keller JN (2005) Ribosome dysfunction is an early event in Alzheimer′s disease. The Journal of neuroscience 25, 9171-9175.
[49] Hernández‐Ortega K, Garcia‐Esparcia P, Gil L, Lucas JJ, Ferrer I (2015) Altered machinery of protein synthesis in Alzheimer′s: from the nucleolus to the ribosome. Brain Pathology.
[50] Roy K, Chakrabarti O, Mukhopadhyay D (2014) Interaction of Grb2 SH3 domain with UVRAG in an Alzheimer’s disease–like scenario. Biochemistry and Cell Biology 92, 219-225.
[51] Lecker SH, Goldberg AL, Mitch WE (2006) Protein degradation by the ubiquitin–proteasome pathway in normal and disease states. Journal of the American Society of Nephrology 17, 1807-1819.
[52] Lebed YV, Dosenko VE, Skibo GG (2011) Expression of Proteasome Subunits PSMB5 and PSMB9 mRNA in Hippocampal Neurons: Link with Apoptosis and Necrosis. International Journal of Physiology and Pathophysiology 2.
[53] Hofmann JW, McBryan T, Adams PD, Sedivy JM (2014) The effects of aging on the expression of Wnt pathway genes in mouse tissues. Age 36, 1033-1040.
[54] Boyken J, Grønborg M, Riedel D, Urlaub H, Jahn R, Chua JJE (2013) Molecular profiling of synaptic vesicle docking sites reveals novel proteins but few differences between glutamatergic and GABAergic synapses. Neuron 78, 285-297.
[55] Ginsberg SD, Che S, Counts SE, Mufson EJ (2006) Shift in the ratio of three‐repeat tau and four‐repeat tau mRNAs in individual cholinergic basal forebrain neurons in mild cognitive impairment and Alzheimer′s disease. Journal of neurochemistry 96, 1401-1408.
[56] Mori H, Kondo J, Ihara Y (1987) Ubiquitin is a component of paired helical filaments in Alzheimer′s disease. Science 235, 1641-1644.
[57] Ehlers MD (2003) Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature neuroscience 6, 231-242.
[58] Riederer BM, Leuba G, Vernay A, Riederer IM (2011) The role of the ubiquitin proteasome system in Alzheimer′s disease. Experimental Biology and Medicine 236, 268-276.
[59] Nguyen MD, Julien J-P, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nature Reviews Neuroscience 3, 216-227.
[60] Kumar DKV, Choi SH, Washicosky KJ, Eimer WA, Tucker S, Ghofrani J, Lefkowitz A, McColl G, Goldstein LE, Tanzi RE (2016) Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Science translational medicine 8, 340ra372-340ra372.
[61] Amor S, Puentes F, Baker D, Van Der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129, 154-169.
[62] Nicolson GL (2008) Chronic bacterial and viral infections in neurodegenerative and neurobehavioral diseases. Laboratory Medicine 39, 291-299.
[63] Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, Yang T-H, Kim H-M, Drake D, Liu XS (2014) REST and stress resistance in ageing and Alzheimer/′s disease. Nature 507, 448-454.
[64] Liang WS, Dunckley T, Beach TG, Grover A, Mastroeni D, Walker DG, Caselli RJ, Kukull WA, McKeel D, Morris JC (2007) Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiological genomics 28, 311-322.
[65] Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R (2008) Alzheimer′s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proceedings of the National Academy of Sciences 105, 4441-4446. |