博碩士論文 103222034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.139.82.23
姓名 周基霖(Ji-Lin Jou)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Cell Tail Retraction Dynamics)
相關論文
★ 二加一維鏈狀微粒電漿液體微觀運動與結構之實驗研究★ 剪力下的庫倫流體微觀黏彈性反應
★ 強耦合微粒電漿中的結構與動力行為研究★ 脈衝雷射誘發之雷漿塵爆
★ 強耦合微粒電漿中脈衝雷射引發電漿微泡★ 二維強耦合微粒電漿方向序的時空尺度律
★ 二維微粒庫倫液體中集體激發微觀動力研究★ 超薄二維庫侖液體的整齊行為
★ 超薄二維微粒電漿庫侖流的微觀運動行為★ 微米狹縫中之脈衝雷射誘發二維氣泡相互作用
★ 介觀微粒庫倫液體之流變學★ 二維神經網路系統之集體發火動力學行為
★ 大白鼠腦皮質層神經元網路之同步發放行為研究★ 二維團簇腦神經網路之同步發火
★ 二維微粒電漿液體微觀結構之記憶行為★ 微粒電漿中電漿微泡的生成與交互作用之動力行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多細胞生物中,細胞爬行參與胚胎演化、傷口癒合等重要的生物過程。爬行時,細胞對稱性消失(極化),並且藉由馬達蛋白的驅動、細胞骨架的聚合(解聚)、以及細胞前端新 (後端舊) 的黏著形成(消失),周期性的伸出前端的突觸、收回後方的尾肢,向前移動。此稱之為纖維母細胞運動。大多數的研究多著重於解釋細胞極化、伸出突觸的過程,但對其尾肢的收縮機制卻不清楚,且顯少受到關注。在此工作中,我們藉由體外實驗,觀察培養於纖維網蛋白塗層上的狗腎臟外皮細胞(MDCK),並且藉由活體或固定之肌動蛋白螢光染色,探討細胞尾肢之收縮機制。經由觀察,尾肢的收縮呈現粘滑運動。這可以藉由細胞黏著的輸送帶機制與鬆脫來解釋。根據外型,細胞的尾肢可以分為粗、細兩種。此外,在細尾肢的滑動運動中,其呈現腫凸、彎曲、漂移、斷裂等形態變化,顯示尾肢內物質的分布不均與黏彈性。另一方面,藉由螢光標記,可以得知尾肢的細胞骨架結構。在收縮時,尾肢內物質有壅塞的現象發生。最後,綜上所述,我們認為,肌動蛋白束與細胞黏著間不同的分解程度、與內部物質的壅塞,導致在收縮過程中,不同的尾肢型態變化。
摘要(英) Cell migration in multicellular organism participate embryonic development, wound healing, and several other important biological processes. In the beginning of migration, the cell polarize itself and then repeatedly extends its protrusion and retracts its rear tail, through motor driving, cytoskeleton polymerization (depolymerization), and the formation (releasing) of new front (old back) focal adhesions on the substrate, called fibroblast motion. Most of the studies focused on the process of polarization and protrusion, but the generic mechanism of tail retraction is still unclear. In our work, this elusive issue is experimentally investigated in vitro using MDCK cells on the fibronectin coated substrate, and the cytoskeleton structure of cells are labeled in live and fixed staining. On the basis of our analysis, the retraction tail exhibits stick-slip motion which is caused by tread-milling mechanism and releasing of focal adhesions respectively. Base on morphology, those tails can be classified into fat and narrow types. During the slipping motion, the shape of narrow tails exist bulging, wiggling, drifting, and breaking events, which imply the uneven distribution along the tail, and viscoelastic property. The fluorescence actin staining shows the retracting structure of tail, and jamming events of intercellular transportation. Finally, we propose that the different morphology evolutions during cell tail retraction are dominated by the jamming of inner material, and relatively decomposition rate of focal adhesions and actin filament bundles.
關鍵字(中) ★ 細胞尾肢收縮
★ 纖維母細胞運動
★ 粘滑運動
★ 黏著
★ 肌動蛋白纖維
★ 不穩定
關鍵字(英) ★ cell tail retraction
★ fibroblast motion
★ stick-slip motion
★ focal adhesions
★ actin filament
★ instability
論文目次 Chapter 1 Introduction 1
Chapter 2 Background 4
2.1. Cell Movement of Multicellular organisms 4
2.1.1. Cytoskeleton 5
2.1.2. Cytoskeleton and plasm membrane 7
2.1.3. Motor driving force and alternative force 8
2.1.4. Fibroblast motion 10
2.2. Cell tail retraction 11
Chapter 3 Experimental methods 14
3.1. Cell culture & sample preparation 14
3.2. Fluorescence staining 15
3.3. Observation Setup 17
Chapter 4 Result and discussions 21
4.1. Morphology of tail retraction 21
4.1.1. Fibroblast motion, classification of cell tail, and stick-slip retraction 22
4.1.2. Instability of narrow tail 24
4.1.3. Surface tension and membrane tube 27
4.2. Actin structure of cell tail 29
4.2.1. Initial cell tail structure of actin filaments 30
4.2.2. Fat tail retraction evolution 32
4.2.3. Narrow bulging tail retraction 33
4.2.4. Slow narrow bulging tail retraction 35
4.2.5. Narrow tail to fat tail 37
4.3. Cell tail retraction model 38
Chapter 5 Conclusion 42
Chapter 6 Appendix 44
6.1. Basic cell culture operation and maintenance 44
6.1.1. Basic operation of aseptic clean hood 44
6.1.2. Regular maintenance 44
6.1.3. Autoclave sterilized container 45
6.1.4. Fibronectin Coating Protocol 46
6.2. MDCK cell line culture protocol 46
6.2.1. Sub-culture protocol of adherent cell 46
6.2.2. Cryopreservation of the cells 47
6.2.3. Thawing the cells 48
6.3. Fluorescence and observation of MDCK 48
6.3.1. CellLight fluorescence staining & observation (version 2) 48
6.3.2. Fluorescent phallotoxins (actin) fixed staining 50
6.3.3. Hoechst (nuclear) fixed/live staining 51
6.4. Solution preparation 52
6.4.1. PBS preparation 52
6.4.2. DMEM preparation 52
Bibliography 54
參考文獻 [1] Herbert Levine and Wouter-Jan Rappel, The physics of eukaryotic chemotaxis, Physics Today (2014)
[2] J. P. Bothma, H. G. Garcia, E. Esposito, G. Schlissel, T. Gregor and M. Levine, Proc Natl Acad Sci U S A 111 (29), 10598-10603 (2014)
[3] T. Gregor, A. P. McGregor and E. F. Wieschaus, Dev Biol 316 (2), 350-358 (2008).
[4] T. Gregor, H. G. Garcia and S. C. Little, Trends Genet 30 (8), 364-375 (2014).
[5] T. Gregor, W. Bialek, R. R. de Ruyter van Steveninck, D. W. Tank and E. F. Wieschaus, Proc Natl Acad Sci USA 102 (51), 18403-18407 (2005).
[6] Amy McMahon, Willy Supatto, Scott E. Fraser, Angelike Stathopoulos, Science 322, 1546 (2008)
[7] Eileen Fonga, Shelly Tzlilb, and David A. Tirrell, Proc Natl Acad Sci USA 107, 45 (2010)
[8] Ester Anona, Xavier Serra-Picamal, Pascal Hersena, Nils C. Gauthierc, Michael P. Sheetz, Xavier Trepat, and Benoît Ladoux, Proc Natl Acad Sci USA 109, 27, 10891-10896 (2012)
[9] Jes K. Klarlund, Proc Natl Acad Sci USA 109, 39, 15799–15804 (2012)
[10] Kai Dierkes, Angughali Sumi, Jérôme Solon, and Guillaume Salbreux, Phys. Rev. Lett. 113, 148102 (2014)
[11] Shiladitya Banerjee1 and M. Cristina Marchetti, Phys. Rev. Lett. 109, 108101 (2012)
[12] Sennis Bray, Cell Movements: from molecules to motility, 2nd de., Garland Publishing (2001)
Cell tail retraction, persistence length
[13] Ulrike Theisen, Ekkehard Straube, & Anne Straube, Directional Persistence of Migrating Cells Requires Kif1C-Mediated Stabilization of Trailing Adhesions. Developmental Cell 23, 1153 (2012)
[14] R. Shlomovitz and N. S. Gov, Phys. Rev. Lett. 98, 168103 (2007)
[15] Chien-Hong Chen, Feng-Ching Tsai, Chun-Chieh Wang, and Chau-Hwang Lee, Phys. Rev. Lett. 103, 238101 (2009)
[16] Christoph Ballestrem, Bernhard Wehrle-Haller, Boris Hinz, and Beat A. Imhof, Molecular Biology of the Cell 11, 2999–3012 (2000)
[17] Louise P Cramer, Mechanism of cell rear retraction in migrating cells. Current Opinion in Cell Biology 25, 591 (2013)
[18] Anne J. Ridley, Martin A. Schwartz, Keith Burridge, Richard A. Firtel, Mark H. Ginsberg, Gary Borisy, J. Thomas Parsons, Alan Rick Horwitz, Science 302, (2003)
[19] Manuel Théry, Victor Racine, Anne Pépin, Matthieu Piel1, Yong Chen, Jean-Baptiste Sibarita and Michel Bornens, Nature Cell Biology 7, 10 (2005)
[20] Christoph Ballestrem, Bernhard Wehrle-Haller, Boris Hinz, and Beat A. Imhof Actin-dependent Lamellipodia Formation and Microtubule-dependent Tail Retraction Control-directed Cell Migration. Molecular Biology of the Cell 11, 2999 (2000)
[21] Tayamika Mseka, & Louise P. Cramer, Actin Depolymerization-Based Force Retracts the Cell Rear in Polarizing and Migrating Cells. Current Biology 21 2085 (2011)
[22] Theresa A. Ulrich, Elena M. de Juan Pardo, and Sanjay Kumar, Cancer Res 69 (10) (2009)
[23] Louise P. Crame, r Timothy J. Mitchison, Molecular Biology of the Cell, 8, 109-119 (1997)
[24] Aneil Mallavarapu and Tim Mitchison, The Journal of Cell Biology 146 (1999)
[25] Amin Rustom, Rainer Saffrich, Ivanka Markovic, Paul Walther, Hans-Hermann Gerdes, Science 303, 13 (2004)
[26] Bjorn Onfelt, Shlomo Nedvetzki, Richard K. P. Benninger, Marco A. Purbhoo, Stefanie Sowinski, Alistair N. Hume, Miguel C. Seabra, Mark A. A. Neil, Paul M. W. French, and Daniel M. DavisThe, Journal of Immunology, 2006
[27] A.V. Kuznetsov, Mathematical Biosciences 232, 101–109 (2011)
[28] Sanjay Kumar, Iva Z. Maxwell, Alexander Heisterkamp, Thomas R. Polte, Tanmay P. Lele, Matthew Salanga, Eric Mazur, and Donald E. Ingber, Biophysical Journal 90, 3762–3773 (2006)
[29] Matthieu Roche, Hamid Kellay, and Howard A. Stone, Phys. Rev. Lett. 107, 134503 (2011)
[30] Edouard Hannezo, Jacques Prost, and Jean-Francois Joanny, PRL 109, 018101 (2012)
[31] O. Rossier, D. Cuvelier, N. Borghi, P. H. Puech, I. Derenyi, A. Buguin, P. Nassoy, and F. Brochard-Wyart, Langmuir 19, 575 (2003)
[32] S. Park, D. Koch, R. Cardenas, J. Kas, and C. K. Shih, Biophysical Journal 89, 4330–4342 (2005)
[33] Ewa Paluch1, and Carl-Philipp Heisenberg, Current Biology 19, R790–R799 (2009)
[34] Shiladitya Banerjee1 and M. Cristina Marchetti, Phys. Rev. Lett. 109, 108101 (2012)
[35] Anutosh Ganguly1, Hailing Yang2,3, Hong Zhang1, Fernando Cabral, and Kamala D. Patel, Mol Cancer Ther.12 (12), 2837–2846 (2013)
指導教授 伊林(Lin I) 審核日期 2016-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明