博碩士論文 103328013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:175 、訪客IP:3.139.233.17
姓名 黃亭維(Ting-Wei Huang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 應用脈衝雷射技術製備高穩定性與高性能之鉑奈米顆粒並應用於燃料電池觸媒層
(Production of Improved Stability and High Performance Pt-Nanoparticle Catalyst using Pulsed Laser for PEMFC Application)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用脈衝雷射沉積法(Pulsed Laser Deposition, PLD)製備鉑奈米顆粒並應用於燃料電池觸媒層。應用在陽極端上可達到Pt使用量僅需17 μg/cm2,而電池性能在0.6 V的電流密度可以達到約1080 mA/cm2,其性能近似市面上主流之傳統塗佈製程之觸媒(Pt使用量為200 μg/cm2 ),觸媒之減量約12倍。根據相關形貌以及電化學性能之檢測,使用PLD製備的觸媒層其厚度極薄而且鉑奈米顆粒分散均勻,在電池中具有較高的利用率。而在化學耐久性方面,PLD之樣品在加速老化測試(Accelerated Degradation Test, ADT)中也具有優異的性能表現。在經過5000圈循環測試後仍保有約60 %的化學活性表面積,此結果顯示了PLD的基材選擇自由度高,可以使用具有較高石墨化的碳材做為觸媒載體,是故能夠有非常良好的話學穩定性。
而將此技術應用在製備電池的陰極觸媒層,可在Pt用量為100 μg/cm2時具有在0.6V之電流密度為1200 mA/cm2之電池性能,此表現已經與鉑擔載量為400 μg/cm2之商用觸媒幾乎一樣。根據電化學診斷,PLD所製備的觸媒可以在降低鉑擔載量的同時,仍然保有優良的觸媒活性,推論是因為由PLD建立的觸媒微結構,比起傳統的塗佈製程,更能夠建立有效的三相點,提高觸媒利用率。
摘要(英) Pulsed laser deposition (PLD) in Ar atmosphere is used to deposit Pt nanoparticle onto gas diffusion layer (GDL), and its application in PEM fuel cell is optimized and characterized. When used at anode side, with a Pt loading of 17 μg/cm2, the current density at 0.6 V in fuel cell test reaches 1100 mA/cm2, and the performance is almost the same as the commercial product with 200 μg/cm2 Pt loading. The high performance of PLD based PEM fuel cell could be ascribed to thinner catalyst layer, good dispersion of Pt particles on GDL, and small particle sizes of 2–3 nm, which lead high utilization of catalyst in cell operating. In addition, it was found that the PLD-produced catalyst on GDL exhibits a much higher electrochemical durability than E-TEK Pt /C, which can be ascribed to the much higher degree of graphitization of GDL than carbon black. The results show that the catalyst support of PLD method can be a high degree of graphitization carbon-based support, which can dramatically increase the durability of the catalyst/support.
The cell performance of 1200 mA/cm2 was achieved by using only 100 g/cm2 Pt loading produced by PLD. The cell performance of PLD sample is almost the same as commercial catalyst with 400 μg/cm2 Pt loading. According the result of electrochemical test, the PLD-made catalyst shows a good activity with a low Pt loading, which can be ascribe to the catalyst structure produced by PLD is more closed to the ideal catalyst structure. The higher possibility of production of effective three-phase point of PLD-made structure will lead a good catalyst utilization efficiency.
關鍵字(中) ★ 脈衝雷射沉積法
★ 質子交換膜燃料電池
★ 質量比功率密度
★ 電化學活性表面積
★ 氧還原反應
關鍵字(英) ★ Pulsed laser deposition
★ PEM fuel cell
★ Mass specific power density
★ Electrochemical active surface area
★ Oxygen reduction reaction
論文目次 碩士論文電子檔授權書 I
碩士論文紙本延後公開/下架申請書 II
研究生論文指導教授推薦書 III
研究生論文口試委員審定書 IV
摘要 V
Abstract VI
致謝 VIII
目錄 X
圖目錄 XV
表目錄 XIX
第一章 緒論 1
1-1 燃料電池介紹 1
1-2 質子交換膜燃料電池 5
1-2-1 基本構造與原理 5
1-2-2 質子交換膜燃料電池發展展望[4] 7
1-3 MEA製作方式介紹 13
1-4 觸媒層製備方式 15
1-4-1 濕式薄膜法 15
1-4-2 電化學法(Electrochemical method) 17
1-4-3 氣相沉積法(Vapor deposition method) 19
1-4-4 燃料電池觸媒層各製備方法之現況 21
1-4-5 脈衝雷射沉積法成長鉑奈米顆粒文獻回顧 23
1-4-6 PLD製程參數對奈米顆粒之影響 27
1-4-7 利用脈衝雷射進行表面處理 31
1-5 燃料電池性能限制之因素 31
1-6 本團隊已完成之工作 33
1-7 研究目的 33
第二章 實驗方法 37
2-1 脈衝雷射系統介紹 39
2-1-1 脈衝雷射沉積系統 39
2-1-2 脈衝雷射燒結系統 41
2-1-3 脈衝雷射系統元件介紹 41
2-1-4 基板與靶材 43
2-2 PLD觸媒樣品製作 43
2-2-1 最佳化鉑擔載量 43
2-2-2 製作雙邊觸媒層皆由PLD製程製備之單電池 45
2-2-3 加入脈衝雷射熱處理強化鉑化學耐久性 45
2-3 MEA製作方式 45
2-3-1 觸媒漿料調配與塗佈 45
2-3-2 MEA熱壓方式 47
2-4 觸媒檢測方式 47
2-4-1 掃描式電子顯微鏡(SEM) 49
2-4-2 穿透式電子顯微鏡(TEM) 51
2-4-3 X光粉末繞射儀(XRD) 53
2-4-4 X光光電子能譜儀(XPS) 55
2-4-5 循環伏安法 59
2-4-6 塔弗量測(Tafel measurement) 63
2-5 燃料電池測試 67
2-5-1 測試系統介紹 67
第三章 實驗結果與討論 77
3-1 應用PLD技術製備陽極觸媒層 77
3-1-1 同鉑擔載量下商用Pt/C與PLD觸媒電池性能之比較 77
3-1-2 觸媒表面積可用率探討 77
3-1-3 加速老化測試結果 81
3-1-4 使用線聚焦脈衝雷射進行表面熱處理 85
3-2 應用PLD技術製備陰極觸媒層 89
3-2-1 以電池性能優化鉑擔載量 89
3-2-2 電池陰極端使用不同鉑擔載量之EIS分析 89
3-2-3 不同鉑擔載量與氫吸附面積之關係 91
3-2-4 不同鉑擔載量之活性比較 91
3-2-5 不同方法製備之鉑價態分析 93
3-2-6 不同鉑擔載量之微結構觀察 95
3-2-7 不同鉑擔載量之粒徑觀測 97
3-2-8 使用線聚焦脈衝雷射束進行表面熱處理 99
3-2-9 改變氣體壓力對電池性能之影響 101
3-3 將PLD應用到製備PEMFC之雙邊觸媒層 103
3-3-1 量測單電池在不同背壓下之性能 103
3-3-2 在不同電壓負載下之EIS分析 103
第四章 結論 105
第五章 未來展望 107
參考文獻 108
參考文獻 [1] 王智薇, “淺談新興能源科技產業─氫能與燃料電池”,產經資訊,(2008).
[2] R. O’Hayre, S.W. Cha, W. Colella, and F.B. Prinz, Fuel cell fundamentals, John Wiley & Sons, (2005).
[3] S. M. Haile, “Fuel cell material and components”, Acta Materialia, 51, 2003, pp.5981-6000, (2003).
[4] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X.C. Adronher. “A review of polymer electrolyte membrane fuel cells:Technology, applications and needs on fundamental research”, Applied Energy, 88, 981-1007 (2011).
[5] Y. F. Zhai, H. Zhang, D.Xing, and Z. G. Shao, “The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test”, J. Power Sources, 164, 126-133, (2007).
[6] J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, and W. Merida, “A review of PEM fuel cell durability:Degradation mechanisms and mitigation strategies”, J. Power Sources, 184, 104-119, (2008).
[7] A. Brouzgou, S. Q. Song, and P. Tsiakaras, “Low and non-platinum electrocatalysts for PEMFCs: Current status, challenges and prospects”, Applied Catalysis B: Environmental, 127,371-388, (2012).
[8] C. Wang, M. Waje, X. Wang J. M. Tang, R. C. Haddon, and Yushan, “Proton exchange membrane fuel cells with carbon nanotube based electrodes”, Nano Lett., 4, 345–348, (2004).
[9] L. Xiong, A. Manthiram, “High performance membrane-electrode assemblies with ultra-low Pt loading for proton exchange membrane fuel cells”, Electrochim. Acta, 50, 3200-3204, (2005).
[10] H. N. Su, S. J. Liao, T. Shu, H. L. Gao, “Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst-sprayed membrane technique”, J. Power Sources, 195, 756-761, (2010).
[11] http://www.toray-eng.com/lcd/coater/lineup/esc.html
[12] H. Morikawa, N. Tsuihiji, T. Mitsui, and K. Kanamura, “Preparation of membrane electrode assembly for fuel cell by using electrophoretic deposition process”, J. Electrochem. Soc., 151, 1733-1737, (2004).
[13] F. F. Onana, N. Guillet, A. M. AlMayouf, “Modifed pulse electrodeposition of Pt nanocatalyst as high-performance electrode for PEMFC”, J. Power Sources, 271, 401-405, (2014).
[14] H. Kim, N.P. Subramanian, B.N. Popov, “Preparation of PEM fuel cell electrodes using pulse electrodeposition”, J. Power Sources, 138, 14-24, (2004).
[15] S. Cuynet, A. Caillard, T. Lecas, J. Bigarre, P. Buvat, P. Brault, “Deposition of Pt inside fuel cell electrodes using high power impulse magnetron sputtering”, J. Phys. D: Appl. Phys., 47, 272001, (2014).
[16] M. S. Cogenli, S. Mukerjee, A. B. Yurtcan, “Membrane electrode assembly with ultralow platinum loading for cathode electrode of PEM fuel cell by using sputter deposition”, Fuel Cells, 15, 288-297, (2015).
[17] A. Khan, B. K. Nath, J. Chutia, “Nanopillar structured platinum with enhanced catalytic utilization for electrochemical reactions in PEMFC”, Electrochim. Acta, 146, 171-177, (2014).
[18] M.S. Saha, A.F. Gull´, R.J. Allen, S. Mukerjee, “High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodesprepared by dual ion-beam assisted deposition”, Electrochim. Acta, 51, 4680-4692, (2006).
[19] https://www.itrc.narl.org.tw/Bulletin/News/ald.php
[20] T. Shu, D. Dang, D. W. Xu, R. Chen, S. J. Liao, C. T. Hsieh, A. Su, H. Y. Song, L. Du, “High-performance MEA prepared by direct deposition of platinum on the gas diusion layer using an atomic layer deposition technique”, Electrochim. Acta, 177, 168-173, (2015).
[21] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC anode with very low Pt loadings using pulsed laser deposition”, Electrochem. Solid-State Lett., 6, 125-128, (2003).
[22] W. Mroz, B. Budner, W. Tokarz, P. Piela, M. L. Korwin-Pawlowski, “Ultra-low-loading pulsed-laser-deposited platinum catalyst films for polymer electrolyte membrane fuel cells”, J. Power Sources, 273, 885-893, (2015).
[23] H. Xu, E. Brosha, F. Garzon, F. Uribe, M. Wilson and B. Pivovar, “The effect of electrode ink processing and composition catalyst utilization” ECS Trans., 11, 383–91, (2007).
[24] M. K. Debe, “Electrocatalyst approaches and challenges for automotive fuel cells”, Nature, 486, 43-51, (2012)
[25] C. Hamel, S. Garbarino, E. Irissou, F. Laplante, M. Chaker, D. Guay,“Influence of the velocity of Pt ablated species on the structural and electrocatalytic properties of Pt thin films”, Int. J. Hydrogen Energy, 35, 8486-8493, (2010)..
[26] S. Garbarino, A. Pereira, C. Hamel, E. Irissou, M. Chaker, and D. Guay, “Effect of size on the electrochemical stability of Pt nanoparticles deposited on gold substrate”, J. Phys. Chem., 114, 2980-2988, (2010).
[27] B. Dahotre, “Laser surface engineering”, Advanced Material & Process, 34-38, (2002).
[28] A. Ibrahim, H. Salem, S. Sedky, “Excimer laser surface treatment of plasma sprayed alumina–13% titania coatings”, Surface and Coatings Technology, 203, 3579-3589, (2009).
[29] O. Antoine, Y, Bultel, R, Durand, “Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®”, J. Electro. Chem., 499, 85-94, (2001).
[30] M. Dhirde, V. Dale, H. Salehfar, D. Mann, T. H. Han, “Equivalent Electric Circuit Modeling and Performance Analysis of a PEM Fuel Cell Stack Using Impedance Spectroscopy”, IEEE Transactions On Energy Conversion, 25, 778-786, (2010).
[31] 林冠任, “利用脈衝雷射沉積技術成長PEMFC 鉑奈米顆粒觸媒”,國立中央大學機械工程研究所碩士論文,(2015).
[32] Z. Qi, A. Kaufman, “Low Pt loading high performance cathodes for PEM fuel cells”, J. Power Sources, 113, 37-43, (2003).
[33] E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua, “Influence of nafion loading in the catalyst layer of gas diffusion electrodes for PEMFC”, J. Power Sources, 77, 136-142, (1999).
[34] S.W. Mahlon, A.V. Judith, G. Shimshon, “Low Platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers”, Electrochimica Acta, 40, 355-363, (1995).
[35] T. Frey, M. Linardi, “Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance”, Electrochimica Acta, 50, 99-105, (2004).
[36] A. L. Patterson, “The Scherrer formula for x-ray particle size determination” Phys. Rev., 56, 978–82, (1939).
[37] http://www.xpsfitting.com/2012/08/spin-orbit-splitting.html
[38] J. M. Rodríguez, J. A. H. Melivn and J. P. Peña, “Determination of the real surface area of Pt electrodes by hydrogen adsorption using cyclic voltammetry”, J. Chem. Educ., 77, 1195–7, (2000).
[39] X. Wang, Z. Tan, M. Zeng and J. Wang, “Carbon nanocages: a new support material for Pt catalyst with remarkably high durability”, Sci. Rep., 4, 4437,(2014).
[40] Y. Xia et al., “Development of half-cells with sulfonated Pt/Vulcan catalyst for PEM fuel cells”, J. Electroana. Chem., 724, 62-70, (2014).
[41] D. A. Jones, “Principle and Prevention of Corrosion”, Pearson, 2nd edition, (1995).
[42] C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang and S. K. Lo, “A PEM fuel cell with metal foam as flow distributor”, Energy Convers. Manage., 62, 14–21, (2012).
[43] 吳佩蓉,「腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究」,國立中央大學能源工程研究所碩士論文,2013
[44] Y. Shao, G. Yin, Y. Gao, “Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell”, J. Power Sources, 171, 558–566, (2007).
[45] P. Lespade, R. Al-Jishi and M. S. Dresselhaus, “Model for Raman scattering from incompletely graphitized carbons”, Carbon, 20, 427–31, (1982).
[46] L. Zou, B. Huang, Y. Huang, Q. Huang and C. Wang, “An investigation of heterogeneity of the degree of graphitization in carbon–carbon composites”, Mater. Chem. Phys., 82, 654–62, (2003).
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2016-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明