博碩士論文 101328010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.226.88.70
姓名 林琨展(Kun-Zhan Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 改善石墨烯轉印品質之研究
(Research on improving the quality of graphene transfer process)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯與超導金屬介面的電子穿隧行為
★ 石墨烯透明導電膜與其成長模型之研究★ 電漿輔助石墨烯直接成長在Pt上成長機制
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 快速退火影響石墨烯晶粒尺寸之研究★ 電漿輔助低溫化學氣相沉積法直接成長石墨烯/金屬複合透明導電薄膜
★ 快速退火生長高品質石墨烯★ 暗場顯微鏡系統監控石墨烯成長之研究
★ 以射頻磁控濺鍍鍍製多層有機矽阻障層研究★ 真空聚合物薄膜在三維曲面研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 石墨烯是目前備受矚目的新興材料之一,因為其優異的導電性以及高穿透率,是一種可撓曲的透明導電薄膜,可望取代傳統透明導電膜如氧化銦錫(ITO)、氧化鋅鋁(AZO)等。疊層之後的石墨烯能夠有更低的片電阻值,疊層過程當中需要進行轉印,在轉印堆疊時疊層石墨烯容易殘留下轉印輔助層如PMMA等,為了解決有機物殘留問題,需要改善其轉印堆疊的手法。
本研究以一般銅箔進行傳統的疊層方式與直接石墨烯/銅箔疊層轉印方式進行堆疊,其所堆疊出的多層石墨烯在電性表現有些許趨勢,為了驗證直接石墨烯/銅箔疊層轉印法的可行性,利用原子力顯微鏡觀察銅箔表面分析不同銅箔的表面粗糙平整度;利用霍爾量測儀量測疊層石墨烯電性;利用拉曼光譜儀分析疊層石墨烯之品質。利用電鍍銅箔所生長之單層石墨烯比起一般銅箔有著較佳的品質,其片電阻值為426 Ω/sq;載子濃度為9.13×1012 cm-2 ;電子遷移率為1603 cm2/V-s,利用其低表面粗糙平整度與良好之電性進行直接石墨烯/銅箔轉印法堆疊,驗證了此疊層轉印法之可行性。
摘要(英) Graphene is one of the highly anticipated new material, because of its excellent electrical conductivity and high transmittance. It is a flexible transparent conductive film, and it is expected to replace the conventional transparent conductive film such as indium tin oxide (ITO), aluminum zinc oxide (AZO) , etc.. Stacking graphene can get a lower sheet resistance value. Graphene need to be transferred in the lamination process. When graphene is transferred in the lamination process, the transfer assist layer such as PMMA, etc. is difficult to be removed completely. In order to solve the problem of residual organics, it is necessary to improve the method of graphene lamination process.
In this study, we use two lamination transfer method on the general copper foil. The electrical properties of stacked multi-layered graphene show a trend slightly. In order to verify the method of direct-graphene/copper foil lamination transfer, we use an atomic force microscope to analyze the surface roughness of copper foil; using Hall measurement instrument to measure the electrical property of graphene; using Raman spectroscopy instrument to analyze the quality of graphene. The the electrical property of graphene grown on electroplating copper foil is better than general copperfoil, its sheet resistance value is 426 Ω / sq; carrier concentration is 9.13 × 1012 cm-2 ; mobility is 1603 cm2 / V-s .With the low surface roughness and good electrical property of graphene grown on electroplating copper foil, we verify the feasibility of the laminate transfer method.
關鍵字(中) ★ 石墨烯
★ 轉印
關鍵字(英) ★ graphene
★ transfer
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 研究架構 4
第二章 基礎理論文獻回顧 5
2-1 石墨烯 5
2-2 透明導電薄膜 9
2-3 石墨烯作為透明導電膜 11
2-4 石墨烯製備方法 14
2-4-1 機械剝離法 14
2-4-2 碳化矽磊晶法 15
2-4-3 氧化石墨烯還原法 16
2-4-4 化學氣相沉積法 17
第三章 實驗方法與儀器介紹 21
3-1基本實驗流程 21
3-1-1 電漿濺鍍剝離銅箔 21
3-1-2 化學氣相沉積法成長石墨烯 24
3-2 轉印石墨烯之方法 26
3-2-1 roll-to-roll轉印法 26
3-2-2 熱解膠帶轉印法 27
3-2-3 clean-lifting transfer轉印法 28
3-3 分析儀器 30
3-3-1 四點探針 30
3-3-2 拉曼光譜儀 30
3-3-3 光學顯微鏡 34
3-3-4 可見光光譜儀 34
3-3-5 霍爾量測儀 35
3-3-6 原子力顯微鏡 35
第四章 結果與討論 37
4-1 轉印疊層石墨烯 37
4-1-1 傳統轉印石墨烯與疊層方式 38
4-1-2 以成長後之石墨烯/銅箔直接疊層轉印石墨烯之方式 39
4-2 成長石墨烯 41
4-2-1 疊層石墨烯之霍爾量測電性分析 43
4-2-2 疊層石墨烯之拉曼量測分析 45
4-3 電鍍剝離銅箔之表面粗糙度分析 47
4-4 以電鍍剝離銅箔成長石墨烯 51
4-4-1 疊層石墨烯之霍爾量測電性分析 51
4-4-2 疊層石墨烯之拉曼量測分析 54
4-5 電鍍銅箔與一般銅箔之量測比較 56
4-5-1 一般銅箔與電鍍銅箔之電性比較 56
4-5-2 電鍍銅箔與一般銅箔之拉曼光譜量測 58
4-5-3 兩種銅箔之電性量測數據量化比較 61
4-5-4 堆疊石墨烯時產生之問題影響 64
第五章 結論 65
參考文獻 67
參考文獻 [1] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. “Electric field effect in atomically thin carbon films,” science, 306(5696), 666-669. (2004).
[2] Iijima, S. “Helical microtubules of graphitic carbon,” nature, 354(6348), 56-58. (1991).
[3] Kroto, H. W. J. R “Heath, SC OBrien, RF Curl, and RE Smalley. C60,” Buckminsterfullerene. Lett. to Nature, 318. (1985).
[4] Geim, A. K., & Novoselov, “K. S. The rise of graphene. Nature materials,” 6(3), 183-191. (2007).
[5] 馬中水, 物理雙月刊二十八卷五期, 752(民國九十五年)。
[6] Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., & Roth, S. “The structure of suspended graphene sheets,” Nature,446(7131), 60-63. (2007).
[7] Geim, A. K., & Novoselov, K. S. “The rise of graphene,” Nature materials, 6(3), 183-191. (2007).
[8] Bunch, J. S. “Mechanical and electrical properties of graphene sheets,”(Doctoral dissertation, Cornell University). (2008).
[9] Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., ... & Geim, A. K. “Fine structure constant defines visual transparency of graphene,” Science, 320(5881), 1308-1308. (2008).
[10] Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., ... & Stormer, H. L. “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, 146(9), 351-355. (2008).
[11] Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. “Superior thermal conductivity of single-layer graphene,” Nano letters, 8(3), 902-907. (2008).
[12] Frank, I. W., Tanenbaum, D. M., Van der Zande, A. M., & McEuen, P. L. “Mechanical properties of suspended graphene sheets,” Journal of Vacuum Science & Technology B, 25(6), 2558-2561. (2007).
[13] Jo, G., Choe, M., Lee, S., Park, W., Kahng, Y. H., & Lee, T. “The application of graphene as electrodes in electrical and optical devices,”Nanotechnology, 23(11), 112001. (2012).
[14] Geim, A. K. “Graphene: status and prospects,” science, 324(5934), 1530-1534. (2009).
[15] Bostwick, A., McChesney, J., Ohta, T., Rotenberg, E., Seyller, T., & Horn, K. “Experimental studies of the electronic structure of graphene,” Progress in Surface Science, 84(11), 380-413. (2009).
[16] Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. “The electronic properties of graphene,” Reviews of modern physics, 81(1), 109. (2009).
[17] Reich, S., Maultzsch, J., Thomsen, C., & Ordejon, P. “Tight-binding description of graphene,” Physical Review B, 66(3), 035412. (2002).
[18] Saito, R., Dresselhaus, G., & Dresselhaus, M. S. “Physical properties of carbon nanotubes (Vol. 35),” London: Imperial college press. (1998).
[19] Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. “Graphene photonics and optoelectronics,” Nature photonics, 4(9), 611-622. (2010).
[20] 林永昌, 呂俊頡, 鄭碩方, 邱博文, 石墨烯之電子能帶特性與其元件應用, in, Physics bimonthly, 2011.
[21] Andrei, E. Y., Li, G., & Du, X. “Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport,”Reports on Progress in Physics, 75(5), 056501. (2012).
[22] BluestoneGlobalTech, Graphene Applications: thin, flexible touch panel/display, LED and batteries, in, Youtube, 2013.
[23] 楊明輝,透明導電膜(2006)
[24] Bunch, J. S., Van Der Zande, A. M., Verbridge, S. S., Frank, I. W., Tanenbaum, D. M., Parpia, J. M., ... & McEuen, P. L. “Electromechanical resonators from graphene sheets,” Science, 315(5811), 490-493. (2007).
[25] Gomez De Arco, L., Zhang, Y., Schlenker, C. W., Ryu, K., Thompson, M. E., & Zhou, C. “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics,” ACS nano, 4(5), 2865-2873. (2010).
[26] Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., ... & Ruoff, R. S. “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano letters, 9(12), 4359-4363. (2009).
[27] Medina, H., Lin, Y. C., Obergfell, D., & Chiu, P. W. “Tuning of charge densities in graphene by molecule doping,” Advanced Functional Materials,21(14), 2687-2692. (2011).
[28] Kasry, A., Kuroda, M. A., Martyna, G. J., Tulevski, G. S., & Bol, A. A. “Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes,” ACS nano, 4(7), 3839-3844. (2010).
[29] Tongay, S., Berke, K., Lemaitre, M., Nasrollahi, Z., Tanner, D. B., Hebard, A. F., & Appleton, B. R. “Stable hole doping of graphene for low electrical resistance and high optical transparency,” Nanotechnology, 22(42), 425701. (2011).
[30] Bi, H., Huang, F., Liang, J., Xie, X., & Jiang, M. “Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells,” Advanced Materials,23(28), 3202-3206. (2011).
[31] Geim, A. K., & Kim, P. “Carbon wonderland,” Scientific American, 298(4), 90-97. (2008).
[32] De Heer, W. A., Berger, C., Wu, X., First, P. N., Conrad, E. H., Li, X., ... & Potemski, M. “Epitaxial graphene,” Solid State Communications, 143(1), 92-100. (2007).
[33] Stankovich, S., Piner, R. D., Chen, X., Wu, N., Nguyen, S. T., & Ruoff, R. S. “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate),” Journal of Materials Chemistry, 16(2), 155-158. (2006).
[34] Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., & Ruoff, R. S. “Graphene and graphene oxide: synthesis, properties, and applications,”Advanced materials, 22(35), 3906-3924. (2010).
[35] He, H., Klinowski, J., Forster, M., & Lerf, A. “A new structural model for graphite oxide,” Chemical physics letters, 287(1), 53-56. (1998).
[36] Xiao, K., Wu, H., Lv, H., Wu, X., & Qian, H. “The study of the effects of cooling conditions on high quality graphene growth by the APCVD method,”Nanoscale, 5(12), 5524-5529. (2013).
[37] Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y. P., & Pei, S. S. “Graphene segregated on Ni surfaces and transferred to insulators,” Applied Physics Letters, 93(11), 113103. (2008).
[38] Obraztsov, A. N., Obraztsova, E. A., Tyurnina, A. V., & Zolotukhin, A. A. “Chemical vapor deposition of thin graphite films of nanometer thickness,” Carbon, 45(10), 2017-2021. (2007).
[39] Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., ... & Kong, J. “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano letters, 9(1), 30-35. (2008).
[40] Chan, S. H., Chen, S. H., Lin, W. T., Li, M. C., Lin, Y. C., & Kuo, C. C. “Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition,” Nanoscale research letters, 8(1), 1. (2013).
[41] 鄭又彰, 電漿輔助石墨烯直接成長在Pt上成長機制. 中央大學能源工程學系碩士論文, 2014.
[42] Mehdipour, H., & Ostrikov, K. “Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure,” ACS nano,6(11), 10276-10286. (2012).
[43] Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Banerjee, S. K. “Large-area synthesis of high-quality and uniform graphene films on copper foils,”Science, 324(5932), 1312-1314. (2009).
[44] Eda, G., Fanchini, G., & Chhowalla, M. “Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material,”Nature nanotechnology, 3(5), 270-274. (2008).
[45] 紀堡鐘, 單晶銅成長石墨烯及其可撓性之研究. 中央大學光電科學與工程學系碩士論文, 2015.
[46] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., ... & Kim, Y. J. “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology, 5(8), 574-578. (2010).
[47] Kang, J., Hwang, S., Kim, J. H., Kim, M. H., Ryu, J., Seo, S. J., ... & Choi, J. B. “Efficient transfer of large-area graphene films onto rigid substrates by hot pressing,” ACS nano, 6(6), 5360-5365. (2012).
[48] Wang, D. Y., Huang, I., Ho, P. H., Li, S. S., Yeh, Y. C., Wang, D. W., ... & Liang, C. T. “Clean‐Lifting Transfer of Large‐area Residual‐Free Graphene Films,” Advanced Materials, 25(32), 4521-4526. (2013).
[49] Colombo, L., Li, X., Han, B., Magnuson, C., Cai, W., Zhu, Y., & Ruoff, R. S. “Growth kinetics and defects of CVD graphene on Cu,” Ecs Transactions, 28(5), 109-114. (2010).
[50] Malard, L. M., Pimenta, M. A., Dresselhaus, G., & Dresselhaus, M. S. “Raman spectroscopy in graphene,” Physics Reports, 473(5), 51-87. (2009).
[51] Yan, Z., & Barron, A. R. “Characterization of graphene by Raman spectroscopy,” Режим доступа: http://cnx. org/content/m34667/1.2/-29 June. (2010).
[52] 朱彥霖, 單晶相石墨烯製備與特性分析. 中央大學光電科學與工程學系碩士論文, 2014.
[53] Luo, Z., Lu, Y., Singer, D. W., Berck, M. E., Somers, L. A., Goldsmith, B. R., & Johnson, A. C. “Effect of substrate roughness and feedstock concentration on growth of wafer-scale graphene at atmospheric pressure,”Chemistry of Materials, 23(6), 1441-1447. (2011).
指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2016-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明