博碩士論文 103328018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.116.42.208
姓名 虞翔智(Hsiang-Chih Yu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 使用電漿診斷平台輔助氫化非晶矽薄膜摻雜硼之光電特性與鈍化品質探討
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了克服能源危機及環境汙染的問題,太陽能是ㄧ極佳的選項,所以可透過太陽能發電以解決此問題。而利用高效率(> 20%)太陽能電池可以減少用地面積以降低其建構成本,其中異質接面矽晶太陽能電池促成高效率太陽能電池的實現。本研究利用射頻電漿輔助化學氣相沉積(Radio-frequency plasma enhanced chemical vapor deposition, RF-PECVD)系統來製備異質接面矽晶太陽能電池中的本質與乙硼烷摻雜氫化非晶矽(a-Si:H)薄膜堆疊結構,藉由調變射頻功率(RF power)、乙硼烷氣體流量(B2H6 flow)、基板溫度(Substrate temperature)、電極間距(Electrode distance)、製程壓力(Pressure)與總進氣量(Total flow)等製程參數探討硼摻雜a-Si:H薄膜電特性之影響。在薄膜沉積製程中首先以光放射光譜儀(Optical emission spectroscopy, OES)和四極柱質譜儀(Quadrupole Mass Spectrometry, QMS)監測電漿物種變化;然後使用四點探針薄膜電阻量測儀(Four point sheet resistance meter)、橢圓偏光儀(Ellipsometer) 、霍爾效應分析儀(Hall)、二次離子質譜儀(Secondary ion mass spectrometer, SIMS)量測薄膜結構與電特性;最後以光電導生命週期量測儀 (Photoconductance lifetime tester)測量此堆疊結構中少數載子生命週期(Lifetime)以得知矽晶鈍化品質優劣。所獲得優質鈍化及導電性的堆疊結構,未來將應用於異質接面太陽能電池射極層上,期望能有效提升電池開路電壓與短路電流。
研究結果顯示,在特定的範圍條件下,可利用OES之SiH*光譜來推測出沉積速率等正比關係、B/Ar與薄膜導電性成正比,並利用Hα/Si*來推測結晶率,綜合以上光譜與薄膜特性之關聯性來做為往後薄膜再現性評估標準,而在調變參數的情況下,隨著硼摻雜氫化非晶矽薄膜中的硼原子量提升,能有效增加薄膜導電特性,但過多的硼原子相對會造成缺陷密度提升,不但造成載子生命週期降低,更會影響薄膜中硼原子的活化,所以找出保有良好電性以及載子生命周期高的薄膜是重要的關鍵。其最終優化結果顯示,體電阻率最低能達到0.0026 ohm-cm,摻雜濃度能達1.25*1020 /cm2,本質堆疊硼摻雜氫化非晶矽層能進一步提升本質層鈍化效果,其堆疊過後載子生命週期為813.37 us,隱開路電壓(Implied Voc)可達0.696 V。
摘要(英) In this study, the intrinsic/boron doping hydrogenated amorphous silicon (a-Si:H) double structure was prepared by radio-frequency plasma enhanced chemical vapor deposition (RF-PECVD). PECVD has several advantages, such as higher compactness of deposited layer, good step coverage, low operation temperature and good passivation properties of deposited layer. The process parameters such as substrate temperature, radio-frequency power, electrode distance, B2H6 flow, pressure and hydrogen dilution ratio that effected the boron doping a-Si:H thin films were investigated. The Quadrupole Mass Spectrometry (QMS) and Optical Emission Spectroscopy (OES) were used for analyzing the plasma characteristics. The Ellipsometer, Four Point Sheet Resistance Meter, Hall measurement, Secondary Ion Mass Spectrometer and Photoconductance lifetime tester were used to obtain the optical and physical properties of films.
The results show that under certain conditions, the SiH * and ratio Hα / Si * of OES spectra can be used to infer the deposition rate and the crystallization rate. The ratio B / Ar of QMS can be used to infer the conductivity of film. Based on the above correlation on spectra and film characteristics, the process repetitivity can be assessed. While changing parameters, the effect on the film that has the good conductivity and the carrier lifetime is most critical. When the amounts of the boron atoms increase, the conducting properties of the boron-doped hydrogenated amorphous silicon thin film increase effectively. However, too much boron atoms increase densities of the defects, thus reduce the carrier lifetime and affect the activation of boron atoms in films. The optimization result shows that the intrinsic/boron doping hydrogenated amorphous silicon (a-Si:H) double structure can enhance the effect of the passivation, and effectively enhance the open circuit voltage in the HIT solar cell.
關鍵字(中) ★ PECVD
★ 硼摻雜
★ OES
★ QMS
關鍵字(英)
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究背景 3
1-3 研究動機 6
第二章 基本理論及文獻回顧 8
2-1 鈍化原理與機制 8
2-3 薄膜沉積 10
2-3-1 非晶相轉換模型 10
2-3-2 氫化非晶矽薄膜介紹 13
2-4 化學氣相沉積(Chemical vapor deposition) 15
2-5 載子生命週期復合機制 19
2-5-1 產生與復合 19
2-5-2 輻射復合(radiative/band to band recombination) 20
2-5-3 歐傑復合(Auger recombination) 20
2-5-4 夏克禮-里德-霍爾復合(Shockley-Read-Hall recombination; SRH) 21
2-5-5 表面復合 22
2-6 文獻回顧 24
第三章 研究方法與實驗設備 32
3-1 實驗方法 32
3-2 實驗步驟 33
3-2-1 試片基板清洗 33
3-2-2 試片製作 34
3-3 實驗裝置與量測 35
3-3-1 射頻電漿輔助化學氣相沉積(Radio-frequency plasma enhanced chemical vapor deposition, RF-PECVD) 35
3-3-2 光放射光譜儀(Optical emission spectroscopy, OES) 38
3-3-3 四極柱質譜儀QMS 40
3-3-4 霍爾量測 (Hall) 49
3-3-5 橢圓偏光儀 (Ellipsometer) 50
3-3-6 四點探針( Four-Point Probe) 52
3-3-7 光電導生命週期量測儀 (Photoconductance lifetime tester) 54
3-3-8 二次離子質譜儀(Secondary Ion Mass Spectrometer, SIMS)目的? 55
第四章 實驗結果與討論 56
4-1 20nm硼摻雜矽薄膜特性優化 57
4-1-1 射頻功率(Power): 57
4-1-2 乙硼烷流量(B2H6 flow) 64
4-1-3 製程壓力(Pressure): 71
4-1-4 電極間距(Electrode distance): 76
4-1-5製程溫度(Temperature): 82
4-1-6 總進氣量(Total flow): 86
4-2 本質層堆疊硼摻雜矽薄膜特性分析 91
4-2-1 以SIMS 量測雜質總量: 91
4-2-2 堆疊結構場效鈍化分析: 102
第五章 結論與未來展望 108
參考文獻 114
參考文獻 [1]. H. Graßl, et al. Towards Sustainable Energy Systems Towards Sustainable Energy System, German Advisory Council on Global Change (WBGU), Germany, 2003.
[2]. P. Würfel, et al. Physics Of Solar Cells, Willey-VCH Verlag GmbH & Co.KgaA, 2005.
[3]. 熊紹珍、朱美芳,太陽能電池基礎與應用,科學出版社,2010年。
[4]. 顧鴻濤,太陽能電池元件導論,全威圖書,2009年。
[5]. 翁敏航,太陽能電池:原理、元件、材料、製程與檢測技術,東華出版社,2012年。
[6]. 許元錫,「同質與異質矽晶太陽電池之電特性與效率比較研究」,國立中央大學,光電科學與工程學系碩士論文,2014年。
[7]. Swanson, M. Richard, “A vision for crystalline silicon photovoltaics”, Progress in photovoltaics: Research and Applications, Vol. 14(5), pp. 443-453, 2006.
[8]. H. Sakata and M. Tanaka, “Sanyo’s challenges to the development of high efficiency HIT Solar Cells and the expansion of HIT business”, IEEE 4th World Conference, pp. 1455-1460, 2006.
[9]. National Renewable Energy Laboratory (USA), 2015, http://www.nrel.gov/ncpv/.
[10]. N. Microdevices, 太陽電池-日本的勝算, pp. 28-28, 2008.
[11]. F. Wang, et al. “Boron doped nanocrystalline silicon/amorphous silicon hybrid emitter layers used to improve the performance of silicon heterojunction solar cells”, Solar Energy, Vol 108, pp. 308-314, 2014.
[12]. M. Taguchi, et al. “Obtaining a higher Voc in HIT Cells”, Progress in Photovoltaics: Research and Applications, Vol 13, pp. 481-488, 2005.
[13]. H. Yang, et al. “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol 472(1), pp. 125-129, 2005.
[14]. C. M. Chou, et al. “Plasma diagnostics for pulsed-dc plasma-polymerizing para-xylene using QMS and OES”, Surface and Coatings Technology, Vol 205(21), pp. 4880-4885, 2011.
[15]. Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles (4e), McGraw-Hill, 2012.
[16]. A. Beiser, Concepts of Modern Physics, McGraw-Hill, 2003.
[17]. A. Matsuda and K. Tanaka, “Guiding principle for preparing highly photosensitive Si- based amorphous alloys”, Journal of Non-Crystalline Solids, Vol 97, pp. 1367-1374, 1987.
[18]. M. Quirk and J. Serda, Semiconductor Manufacturing Technology, 1st, Prentice Hall, 2000.
[19]. Y. Yamamoto, Y. Uraoka, T. Fuyuki, “Passivation effect of plasma chemical vapor deposited SiNx on single crystalline silicon thin film solar cells”, Japanese Journal of Applied Physics, Vol 42(8R), pp. 5135-5139, 2003.
[20]. M. Z. Burrows, et al. “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation”, Journal of Vacuum Science & Technology A, Vol. 26(4), pp. 683-687, 2008.
[21]. J. Sritharathikhun, et al. “Surface passivation of crystalline and polycrystalline silicon using hydrogenated amorphous silicon oxide film”, Japanese Journal of Applied Physics, Vol 46(6R), pp. 3296-3300, 2007.
[22]. M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
[23]. 莊達人,VLSI製造技術,高立圖書有限公司,民國85 年。
[24]. A. V. Shah, et al. “Material and solar cell research in microcrystalline silicon”, Solar Energy Materials and Solar Cells, Vol 78, pp. 469-491, 2003
[25]. A. Matsuda, “Microcrystalline silicon. Growth and device application”, Journal of Non-Crystalline Solids, Vol 338, pp.1-12, 2004.
[26]. 謝宏健,「以奈米小球提升矽薄膜太陽能電池吸收之研究」,國立中央大學,光電科學與工程學系碩士論文,民國九十七年。
[27]. A. v. Keudell and J. R. Abelson, “Direct insertion of SiH3 radicals into strained Si-Si surface bonds during plasma deposition of hydrogenated amorphous silicon films”, Physical Review B, Vol 59(8), pp. 5791-5791, 1999.
[28]. A. Matsuda, et al. “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells, Vol 78(1), pp. 3-26, 2003.
[29]. A. Matsuda, “Thin-film silicon-growth process and solar cell application”, Japanese Journal of Applied Physics, Vol 43(12R), pp. 7909–7920, 2004.
[30]. Y. Ruoche, et al. Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge, 1997.
[31]. J. M. Kishner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, Journal of Applied Physics, Vol 62(7), pp. 2803–2811, 1987.
[32]. D. L. Meier, et al. “Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon”, 17th NREL Crystalline Silicon Workshop, August, 2007.
[33]. W. Shockley, W. T. Read, Jr. “Statistics of the recombinations of holes and electrons”, Physical Review, Vol 87(5), pp. 835–842, 1952.
[34]. 黃惠良等著,太陽電池,初版,五南出版社,民國九十七年十二月。
[35]. N. R. Hall, “Electron-hole recombination in germanium”, Physical Review, Vol 87(2), pp. 387–387, 1952.
[36]. 張世育,「矽量子點鑲嵌在氮化矽薄膜之合成與光學性質研究」,中華大學碩士論文,民國94 年。
[37]. T. S. Horanyi, T. Pavelka, P. Tutto, “In situ bulk lifetime measurement on silicon with a chemically passivated surface”, Applied Surface Science, Vol 63, pp. 306-311, 1993.
[38]. M. Taguchi, et al. "24.7% Record efficiency HIT solar cell on thin silicon wafer." IEEE Journal of Photovoltaics, Vol 4(1), pp. 96-99, 2014.
[39]. Y. Fukuda, et al. “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon” ,Thin Solid Films, Vol 386(2), pp. 256-260, 2001
[40]. S. Ram, et al. “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Physica status solidi© , Vol 7(3-4), pp. 553–556, 2010.
[41]. K. S. Ji, et al. “Surface passivation properties of boron and phosphor-doped a-Si:H films with multi-step deposition for Si heterojunction solar cells”, Photovoltaic Specialists Conference, pp. 3190-3192, 2010.
[42]. S. De Wolf and G. Beaucarne, “Surface passivation properties of boron-doped plasma-enhanced chemical vapor deposited hydrogenated amorphous silicon films on p-type crystalline Si substrates”, Journal of Applied Physics, Vol 88(2), pp. 22104-22104, 2006.
[43]. S. Martín de Nicolás, et al. “n-type a-Si:H layers applied to the back side of heterojunction solar cells: Experimental and simulation analysis”, Solar Energy Materials & Solar Cells, Vol 115, pp. 129-137, 2013.
[44]. U. K. Das, et al. “Surface passivation and heterojunction cells on Si (100) and (111) wafers using dc and rf plasma deposited Si:H thin films” , Applied Physics Letters, Vol 92(3), pp. 63504-1–63504-3, 2008.
[45]. S. Martín de Nicolás, et al. “Optimisation of doped amorphous silicon layers applied to heterojunction solar cells”, Energy Procedia, Vol 8, pp. 226-231, 2011.
[46]. T. Moiseev, et al. “Threshold ionization mass spectrometry in the presence of excited silane radicals”, Journal of Physics D: Applied Physics, Vol 42(7), pp. 5-10, 2009.
[47]. 陳建勳,「非晶矽繞射光學元件的製作與分析」,國立中央大學,物理研究所碩士論文,民國九十四年。
[48]. R. Martins, et al. “Role of ion bombardment and plasma impedance on the performances presented by undoped a-Si:H films”, Thin Solid Films, Vol.383(1), pp. 165-168, 2001.
[49]. P. Tristant, et al. “Microwave plasma enhanced CVD of aluminum oxide films:OES diagnostics and influence of the RF bias”, Thin Solid Films, Vol 390(1), pp. 51–58, 2001.
[50]. E. Campbell, et al. “Laser plasma coupling in long pulse, long scale length plasmas”, Applied Physics Letters, Vol 43(1), pp. 54-59, 1983
[51]. 蔡旺霖,「微晶矽薄膜製程於高頻電漿反應器之電漿診斷與模型研究」,私立中原大學,碩士論文,2010年。
[52]. Hiden原廠操作手冊
[53]. S. M. Sze, Semiconductor Devices Physics and technology, John Wiley & Sons, 2001.
[54]. D. A. Neamen, Semiconductor Physics and Devices, McGraw-Hill Higher Education, 2003.
[55]. P. Klement, et al. “Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers”, Applied Physics Letters, Vol 102(15), pp. 152109-152109, 2013.
[56]. A. Matsuda, et al. “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials and Solar Cells, Vol 78(1), pp. 3-26, 2003.
[57]. D.E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and InSb from 1.5 to 6.0 eV”, Physical Review B, Vol 27(2), pp. 985-985, 1983.
[58]. D. Das, “Evolution of microcrystalline growth pattern by ultraviolet spectroscopic ellipsometry on Si:H films prepared by Hot-Wire CVD”, Solid State Communications, Vol 128(11), pp. 397–402, 2003.
[59]. A. Francis, et al. “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Applied physics letters, Vol 71, pp. 3796–3799, 1997.
[60]. 潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,中原大學,化學工程研究所碩士論文,民國九十七年。
[61]. S. Y. Lien, et al. “Effects of RF power and pressure on performance of HF-PECVD silicon thin-film solar cells”, Thin Solid Films, Vol 518(24), pp. 7233-7235, 2010.
[62]. A. Matsuda, “Thin-film silicon —growth process and solar cell application—”, Japanese Journal of Applied Physics, Vol 43(12R), pp. 7909-7909, 2004.
[63]. 樊洁平,劉惠民,田強,「光吸收介質的吸收係數與介電函數虛部的關係」,大學物理,28 卷,3 期,民國九十八年。
[64]. K. Oda, et al. “Effects of high-concentration phosphorus doping on crystal quality and lattice strain in SiGe HBTs”, Applied Surface Science, Vol 254(19), pp. 6017-6020, 2008.
[65]. C. B. Singh, et al. “Effect of boron doping on optical and electrical properties of p-type a-Si:H films for thin film solar cells application”, Proceedings of 2014 1st International Conference on Non Conventional Energy, pp. 38-42, 2014.
[66]. 蔡宗典,「超薄 ITO 透明導電膜應用在觸控面板之研究」,國立中央大學,光電科學研究所碩士論文,民國九十七年。
[67]. 張善淵,「使用電子迴旋供震化學氣相沉積製備異質接面太陽能電池表面鈍化氫化 非晶矽薄膜製程參數研究」, 國立中央大學,能源工程研究所碩士論文,民國一百零二年。
[68]. 吳培慎,「利用 PECVD 製備超薄本質氫化非晶矽(a-Si:H) 薄膜之優質鈍化成效研究」,國立中央大學,光電科學與工程學系照明顯示科技碩士班,民國一百零四年。
[69]. 劉憲明,「寬能隙本質氫化非晶氧化矽(a-SiOx:H)薄膜光電特性與鈍化品質之關聯探討」,國立中央大學,機械工程學系光機電工程碩士班碩士論文,民國一百零 三年。
[70]. T. Sawada, et al. “High-efficiency a-Si/c-Si heterojunction solar cell”, IEEE Photovoltaic Specialists Conference, pp. 1219-1226, 1994.
[71]. A. Rawat, et al. “Numerical simulations for high efficiency HIT solar cells using microcrystalline silicon as emitter and back surface field (BSF) layers”, Solar Energy, Vol 110, pp. 691-703, 2014.
指導教授 利定東 審核日期 2016-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明