參考文獻 |
African Development Bank “Swaziland Economy” (2014) Retrieved November 2015
from the World Wide Web: http://www.afdb.org/en/countries/southern-
africa/swaziland/swaziland-economic-outlook/
Andrews, S. S. (2006) Crop Residue Removal for Biomass Energy Production: Effects on
Soils and Recommendations. USDA White Paper. Retrieved June 2016, from the
World Wide Web:
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053255.pdf.
Batidzirai, B., Valk, M., Wicke, B., Junginger, M., Daioglou, V., Euler, W., & Faaij, A. P.
C. (2016). Current and future technical, economic and environmental feasibility of
maize and wheat residues supply for biomass energy application: Illustrated for
South Africa. Biomass and Bioenergy, 92, 106-129.
Chan, Y. (2008). Increasing soil organic carbon of agricultural land. Primefact, 735, 1-5.
Retrieved July 30 2016, from the World Wide Web: http://www.sdsoil.com/wp-
content/uploads/2014/11/Increasing-soil-organic-carbon.pdf
Cutz, L., Haro, P., Santana, D., & Johnsson, F. (2016). Assessment of biomass energy
sources and technologies: The case of Central America.Renewable and Sustainable
Energy Reviews, 58, 1411-1431.
Deepchand, K. (2005). Sugar cane bagasse energy cogeneration—lessons from Mauritius.
In parliamentarian forum on energy legislation and sustainable development, Cape
Town, South Africa (Vol. 10, p. 2005).
Evans, A., Strezov, V., & Evans, T. J. (2010). Sustainability considerations for electricity
generation from biomass. Renewable and Sustainable Energy Reviews, 14(5),
1419-1427.
F. Shafizadeh, Basic principles of direct combustion, in: S.S. Sofer, O.R. Zaborsky (Eds.),
Biomass Conversion Processes for Energy and Fuels, Plenum, New York, 1981,
pp. 103–124.
FAOSTAT (Food and Agricultural Organization Statistic Platform) (2015), “FAOSTAT
Domains, Forestry Production and Trade”, Retrieved March 2016 from the World
Wide Web: http://faostat3.fao.org/faostat-gateway/go/to/download/F/FO/E.
FAOSTAT (Food and Agricultural Organization Statistic Platform) Swaziland Crop
Productin (2015), Retrieved March 2016 from the World Wide Web: “FAOSTAT
Domains, Crop Production and Trade”, http://faostat3.fao.org/download/Q/QC/E,
Gonzalez-Salazar, M. A., Morini, M., Pinelli, M., Spina, P. R., Venturini, M., Finkenrath,
M., & Poganietz, W.-R. (2014). Methodology for estimating biomass energy
potential and its application to Colombia. Applied Energy, 136, 781-796.
Heuzé V., Tran G., Giger-Reverdin S., 2015. Pineapple by-products. Feedipedia, a
programme by NRA, CIRAD, AFZ and FAO Retrieved May 2016 from the
World Wide Web: http://www.feedipedia.org/node/676.
Hiloidhari, M., Das, D., & Baruah, D. (2014). Bioenergy potential from crop residue
biomass in India. Renewable and Sustainable Energy Reviews, 32, 504-512.
Hoogwijk, M., Faaij, A., Van Den Broek, R., Berndes, G., Gielen, D., & Turkenburg, W.
(2003). Exploration of the ranges of the global potential of biomass for energy.
Biomass and bioenergy, 25(2), 119-133.
IEA (2008), Combined Heat and Power: Evaluating the Benefits of Greater Global
Investment, IEA/OECD, and Paris Retrieved February 2016 from the World Wide
Web:
https://www.iea.org/publications/freepublications/publication/chp_report.pdf
IEA (International Energy Agency) (2014), “World Energy Outlook 2014”, Retrieved
October 2015 from the World Wide Web: www.iea.org/publications/
freepublications/publication/WEO2011_WEB.pdf
IRENA (International Renewable Energy Agency) (2012), “Renewable Energy
Technologies: Cost Analysis Series:” Retrieved June 2016 from the World Wide
Web:
https://www.irena.org/DocumentDownloads/Publications/RE_Technologies_Cost
_Analysis-BIOMASS.pdf
IRENA (International Renewable Energy Agency) (2014), “Swaziland Renewables
Readiness Assessment:” Retrieved June 2015 from the World Wide Web:
http://www.irena.org/DocumentDownloads/Publications/IRENA_RRA_Swazilan
d_2014.pdf.
Jenkins B.M. Ebeling J.M, Correlation of physical and chemical properties of terrestrial
biomass with conversion, Proceedings Energy from Biomass and Wastes IX,
Institute of Gas Technology, Chicago, IL, 1985.
Jenkins, B., Baxter, L. L., & Miles, T. R. (1998). Combustion properties of biomass. Fuel
processing technology, 54(1), 17-46.
Jenkins. B.M Properties of biomass, Biomass Energy Fundamentals, EPRI TR-102107,
Electric Power Research Institute, Palo Alto, CA, 1993.
Jingura, R. M., Musademba, D., & Kamusoko, R. (2013). A review of the state of biomass
energy technologies in Zimbabwe. Renewable and Sustainable Energy Reviews,
26, 652-659.
Jingura, R., & Matengaifa, R. (2008). The potential for energy production from crop
residues in Zimbabwe. Biomass and Bioenergy, 32(12), 1287-1292.
Leete, M., Damen, B., & Rossi, A. (2013). Swaziland. BEFS country brief. Retrieved
November 2015 from the World Wide Web:
http://www.fao.org/docrep/017/aq180e/aq180e.pdf.
Lynd, L., Von Blottnitz, H., Tait, B., De Boer, J., Pretorius, I., Rumbold, K., & Van Zyl,
W. (2003). Converting plant biomass to fuels and commodity chemicals in South
Africa: a third chapter? South African Journal of Science, 99.
McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass.
Bioresource technology, 83(1), 37-46.
McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies.
Bioresource technology, 83(1), 47-54.
Menne, Wally, and Ricardo Carrere. Swaziland, the Myth of Sustainable Timber
Plantations. World Rainforest Movement, 2007.
MNRE (2013) Ministry of Natural Resources and Energy “Household Energy Access
Study”. Retrieved June 2016 from the World Wide Web:
http://www.irena.org/DocumentDownloads/events/2015/Bioenergy%20Statistics
%20Presentations/Household%20energy%20surveys/Swaziland_household%20e
nergy%20access%20report.pdf.
Mohammed, Y., Mustafa, M., Bashir, N., Ogundola, M., & Umar, U. (2014). Sustainable
potential of bioenergy resources for distributed power generation development in
Nigeria. Renewable and Sustainable Energy Reviews, 34, 361-370.
Mohan, D., Pittman, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil:
a critical review. Energy & fuels, 20(3), 848-889.
Okello, C., Pindozzi, S., Faugno, S., & Boccia, L. (2013). Bioenergy potential of
agricultural and forest residues in Uganda. Biomass and Bioenergy, 56, 515-525.
Papendick R.I, Moldenhauer. W.C (1995) “Crop Management to Reduce Soil Erosion and
Improve Soil Quality” USDA-Agricultural Research Service, Northwest.
Springfield (VA), p. 70 Conservation Report Number 40
Potgieter J.G (2011). Agricultural Residue as a Renewable Energy Resource – Utilisation
of Agricultural Residue in the Greater Gariep Agricultural Area as a Renewable
Energy Resource. MSc Thesis Stellenbosch University, Cape Town, South Africa
p. 85
REASWA “Renewable Energy in Swaziland Case Study Brochure” (2004) Retrieved
November 2015 from the World Wide Web:
http://www.gubaswaziland.org/files/documents/resource11.pdf
REN21 (2011), Renewables 2011: Global Status Report, REN21, and Paris. November
2015 from the World Wide Web
http://www.ren21.net/Portals/0/documents/Resources/GSR2011_FINAL.pdf
REN21 RENEWABLES (2015) GLOBAL STATUS REPORT. November 2015 from the
World Wide Web: http://www.ren21.net/wp-content/uploads/2015/07/REN12-
GSR2015_Onlinebook_low1.pdf
Scarlat, N., Blujdea, V., & Dallemand, J. F. (2011). Assessment of the availability of
agricultural and forest residues for bioenergy production in Romania. Biomass and
Bioenergy, 35(5), 1995-2005.
SE4ALL ‘Kingdom of Swaziland, Sustainable Energy for All Country Action Plan’ (2014)
Retrieved November 2015 from the World Wide Web:
http://www.se4all.org/sites/default/files/Swaziland_RAGA_EN_Released.pdf
SEC Swaziland Electricity Company 2014/2015 Annual Report Retrieved July 2016 from
the World Wide Web:
http://www.sec.co.sz/documents/annualreports/20142015.pdf
Shane, A., Gheewala, S. H., Fungtammasan, B., Silalertruksa, T., Bonnet, S., & Phiri, S.
(2016). Bioenergy resource assessment for Zambia. Renewable and Sustainable
Energy Reviews, 53, 93-104.
Shonhiwa, C. (2013). An assessment of biomass residue sustainably available for
thermochemical conversion to energy in Zimbabwe. Biomass and Bioenergy, 52,
131-138.
Smeets, E. M., & Faaij, A. P. (2007). Bioenergy potentials from forestry in 2050. Climatic
Change, 81(3-4), 353-390.
SSA (Swaziland Sugar Association) (2015), “Performance Highlights”, Retrieved May
2016 from the World Wide Web
http://www.ssa.co.sz/images/SwazilandSugarAssociation2.pdf
Tran G., 2016. Citrus fruits. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO.
Retrieved May 2016 from the World Wide
Web: http://www.feedipedia.org/node/678
U.S Department of Energy “Estimating Appliance and Home Electronic Energy Use”
Retrieved May 2016 from the World Wide Web
http://energy.gov/energysaver/estimating-appliance-and-home-electronic-energy-
use. Accessed January 2016
Valk. M (2013). Availability and Cost of Agricultural Residues for Bioenergy Generation.
International Literature Review and a Case Study for South Africa. MSc Thesis
Utrecht University, Utrecht, Netherlands p. 126 Available from:
http://dspace.library.uu.nl/handle/1874/296153
Wicke, B., Smeets, E., Watson, H., & Faaij, A. (2011). The current bioenergy production
potential of semi-arid and arid regions in sub-Saharan Africa. Biomass and
Bioenergy, 35(7), 2773-2786.
World Bank Database. Country Indicator: Electricity Transmission losses Retrieved April
2016 from the World Wide Web
http://data.worldbank.org/indicator/EG.ELC.LOSS.ZS?locations=ZA
World Bank Database. Country Indicators Retrieved August 2015 from the World Wide
Web http://www.worldbank.org/en/country/swaziland |