參考文獻 |
[1]I.F. Akyildiz, W.Y Lee, M.C. Vuran and S. Mohanty, "NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey," Computer Networks, vol.50, no.13, pp.2127-2159, 2006.
[2]S. Haykin, "Cognitive Radio: Brain-Empowered Wireless Communications," IEEE Journal on Selected Areas in Communications, vol.23, no.2, pp.201–220, 2005.
[3]T. Forde and L. Doyle, "A TV whitespace ecosystem for licensed cognitive radio," Telecommun. Policy, vol. 37, no. 2/3, pp.130–139, 2013.
[4]C. Cordeiro , K. Challapali and D. Birru, "IEEE 802.22: An introduction to the first wireless standard based on cognitive radios, " Journal of communications, vol. 1, no. 1, 2006.
[5]W. Hu , D. Willkomm , M. Abusubaih , J. Gross , G. Vlantis , M. Gerla and A. Wolisz, "Dynamic frequency hopping communities for efficient IEEE 802.22 operation, " IEEE Commun. Mag., vol. 45, no. 5, pp.80-87, 2007.
[6]FCC, "Facilitating opportunities for flexible, efficient and reliable spectrum use employing cognitive radio technologies: Notice of proposed rule making and order," ET Docket No 03-222, 2003.
[7]W. Wang, J. Cai, A. S. Alfa, A. C. Soong and S. Li, "Adaptive dual-radio spectrum-sensing scheme in cognitive radio networks," Wireless Commun. Mobile Comput., vol. 13, no. 14, pp.1247–1262, 2013.
[8]T Yucek and H. Arslan, "A survey of spectrum sensing algorithms for cognitive radio applications," IEEE Communications Surveys & Tutorials, pp.116–130, 2009.
[9]P. Wang , L. Xiao , S. Zhou and J. Wang, "Optimization of detection time for channel efficiency in cognitive radio systems," Proc. IEEE Wireless Commun. and Networking Conf., pp.111-115, 2007.
[10]Q. Zhao , S. Geirhofer , L. Tong and B. M. Sadler, "Optimal dynamic spectrum access via periodic channel sensing", Proc. IEEE Wireless Commun. and Networking Conf., pp.3-37, 2007.
[11]J. Nieminen, R. Jantti, and L. Qian., "Time synchronization of cognitive radio networks, " IEEE Global Telecommunications (GLOBECOM), pp.1-6, 2009.
[12]S. Eljack, B. Huang, L. Tu, P. Zhang, "Synchronized Multi-Channel Cognitive MAC Protocol with Efficient Solutions for Second Spectrum Access," Ubiquitous, Autonomic and Trusted Computing (UIC-ATC), pp.477-481, 2009.
[13]S. Srishti, G.D. Yacine, S. Aldri and N. Michele, "A reliable and distributed time synchronization for Cognitive Radio Networks," Global Information Infrastructure and Networking Symposium (GIIS), pp.1-4, 2012.
[14]Y. R. Kondareddy and P. Agrawal, "Synchronized MAC Protocol for Multi-hop Cognitive Radio Networks, " IEEE International Conference on Communications (ICC), pp.3198–3202, 2008.
[15]M. Moriyama and T. Fujii, "Novel timing synchronization technique for public safety communication systems employing heterogeneous cognitive radio," Computing, Networking and Communications (ICNC), pp.325-330, 2015.
[16]Q. Zhao and B. Sadler, "A survey of dynamic spectrum access," IEEE Signal Process. Mag., vol. 24, no. 3, pp.79–89, 2007.
[17]S. Geirhofer, L. Tong, and B. Sadler, "Dynamic spectrum access in the time domain: Modeling and exploiting white space," IEEE Commun. Mag., vol. 45, no. 5, pp.66–72, 2007.
[18]Q. Zhao and A. Swami, "A decision-theoretic framework for dynamic spectrum access, " IEEE Wireless Commun. Mag.: Special Issue on Cognitive Wireless Networks, 2007.
[19]Y.C. Wang, "The Analysis of Shift Sequence Based Channel Selection in Cognitive Radio Network," Master Thesis, National Central University, 2011.
[20]Y.W. Chen, P.Y Liao and Y.C. Wang, "A channel-hopping scheme for continuous rendezvous and data delivery in cognitive radio network," Peer-to-Peer Networking and Applications, 2014.
[21]Y.C. Chen, "Efficiency Study of Rendezvous and Data Transmission for Dual-Antenna Devices in Cognitive Radio Network," Master Thesis, National Central University, 2013.
[22]B.T. Huang, "Distributed Spectrum Adjustment Policy for Cognitive Radio Network," Master Thesis, National Central University, 2011.
[23]Y.W. Chen, P.Y Liao and B.T. Huang, "A Chip-Based Distributed Spectrum Adjustment for Fair Access in Cognitive Radio Network," Journal of Internet Technology, 2016.
[24]T. Zhang and X. Yu, "Spectrum Sharing in Cognitive Radio Using Game Theory--A Survey, " The 6th International Conference on Wireless Communications Networking and Mobile Computing, September, pp.1-5, 2010.
[25]E.H. Wassim, S. Haidar and G. Mohsen, "Survey of Security Issues in Cognitive Radio Networks, " Journal of Internet Technology (JIT), vol.12, no.2, pp.181-198, 2011.
[26]A.G. Fragkiadakis, E.Z. Tragos and I.G. Askoxylakis, "A Survey on Security Threats and Detection Techniques in Cognitive Radio Networks," IEEE Communications Surveys and Tutorials 15, pp.428-445, 2013.
[27]A.C. Sumathi and R. Vidhyapriya, "Security in cognitive radio networks - a survey," 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA), pp.114-118, 2012.
[28]J. Li, Z. Feng, Z. Feng and P. Zhang, "A survey of security issues in Cognitive Radio Networks," China Communications, vol. 12, no. 3, pp.132-150, 2015.
[29]NC Theis, RW Thomas and LA DaSilva, "Rendezvous for Cognitive Radios," IEEE Transactions on Mobile Computing, vol.10 no.2, pp.216-227, 2011.
[30]J.P. Sheu C.W. Su and G.Y. Chang, "Asynchronous Quorum-Based Blind Rendezvous Schemes for Cognitive Radio Networks," IEEE Transactions on Communications, vol.64, no.3, pp.918-930, 2016.
[31]G.Y. Chang, J.F. Huang and Y.S. Wang, "Matrix-Based Channel Hopping Algorithms for Cognitive Radio Networks, " IEEE Transactions on Wireless Communications, vol.14, no.5, pp.2755-2768, 2015.
[32]C.M. Chao, H.Y. Fu and L.R. Zhang, "A Fast Rendezvous-Guarantee Channel Hopping Protocol for Cognitive Radio Networks, " IEEE Transactions on Vehicular Technology, vol.64, no.12, pp.5804-5816, 2015.
[33]C Cormio and KR Chowdhury, "Common control channel design for cognitive radio wireless ad hoc networks using adaptive frequency hopping," Ad Hoc Networks, vol.8, pp.430-438, 2010.
[34]MR Kim and SJ Yoo, "Distributed Coordination Protocol for Common Control Channel Selection in Multichannel Ad-Hoc Cognitive Radio Networks," Wireless and Mobile Computing, Networking and Communications(WIMOB), pp.227-232, 2009.
[35]C Cormio and KR Chowdhury, "An adaptive multiple rendezvous control channel for Cognitive Radio wireless ad hoc networks," Pervasive Computing and Communications Workshops (PERCOM Workshops), pp.346-351, 2010.
[36]T. Chen, H. Zhang, G.M. Maggio, I. Chlamtac, "CogMesh: A cluster-based cognitive radio network," Proc. of IEEE DySPAN, pp.168–178, 2007.
[37]T. Chen, H. Zhang, M.D. Katz, Z. Zhou, "Swarm intelligence based dynamic control channel assignment in cogmesh," Proc. of IEEE International Conference on Communications Workshops (ICC Workshops), pp.123–128, 2008.
[38]Q Liu, D Pang, G Hu and X Zhou, "A Neighbor Cooperation Framework for Time-efficient Asynchronous Channel Hopping Rendezvous in Cognitive Radio Networks," Dynamic Spectrum Access Networks (DYSPAN), pp.529-539, 2012.
[39]K Bian and JM Park, "Asynchronous channel hopping for establishing rendezvous in cognitive radio networks," IEEE INFOCOM, pp.236-240, 2011.
[40]MD Silvius, F Ge, A Young, AB MacKenzie and CW Bostian, "Smart Radio: Spectrum Access for First Responders," Proc. SPIE 6980, Wireless Sensing and Processing III, pp.1-12. doi:10.1117/12.777678, 2008.
[41]J Jia and Q Zhang, "Rendezvous Protocols Based on Message Passing in Cognitive Radio Networks," IEEE Transactions on Wireless Communications, vol. 12, no. 11, pp.5594-5606, 2013.
[42]L Yu, H Liu, YW Leung, X Chu and Z Lin, "Multiple radios for effective rendezvous in cognitive radio networks," IEEE International Conference on Communications, ICC, pp.2857-2862, 2013.
[43]V Reguera, EO Guerra, RD Souza, E Fernandez and G Brante, "Short Channel Hopping Sequence Approach to Rendezvous for Cognitive Networks," IEEE Communications Letters, vol.18, no. 2, pp.289-292, 2014.
[44]L DaSilva and I Guerreiro, "Sequence Based Rendezvous for Dynamic Spectrum Access," IEEE Int’l Symp. New Frontiers in Dynamic Spectrum Access Networks, pp.1-7, 2008.
[45]C. Edward, Y. Peh, Y.C. Liang, Y.L. Guan and Y. Zeng, "Cooperative Spectrum Sensing in Cognitive Radio Networks with Weighted Decision Fusion Schemes," IEEE Transactions on Wireless Communications, vol.9, no.12, pp.3838-3847, 2010.
[46]X. Chen, H.H. Chen and W. Meng, "Cooperative Communications for Cognitive Radio Networks — From Theory to Applications," IEEE Communications Surveys & Tutorials, vol.16, no. 3, pp.1180–1192, 2014.
[47]J.So and R.Srikant, "Improving Channel Utilization via Cooperative Spectrum Sensing With Opportunistic Feedback in Cognitive Radio Networks," IEEE Communications Letters, vol.19, vo. 6, pp.1065-1068, 2015.
[48]K.Lamiaa and A. Alagan, "A weighted fusion scheme for cooperative spectrum sensing based on past decisions," Personal Indoor and Mobile Radio Communications (PIMRC), pp.354-358, 2011.
[49]Y. Chen, Y. Wu, B. Wang and K.J. Ray Liu, "Spectrum Auction Games For Multimedia Streaming Over Cognitive Radio Networks," IEEE Transactions on Communications, vol.58, no.8, pp.2381-2390, 2010.
[50]B. Wang, Y. Wu and K.J. Ray Liu, "Game Theory for Cognitive Radio Networks: An Overview," Computer Networks (Elsevier), vol.54, no.14, pp.2537-2561, 2010.
[51]L.C. Wang, C.W. Wang and F. Adachi, "Load-Balancing Spectrum Decision for Cognitive Radio Networks," IEEE Journal on Selected Areas in Communications, vol.29, no.4, pp.757-769, 2011.
[52]H.P. Shiang and Mihaela van der Schaar, "Queuing-based dynamic channel selection for heterogeneous multimedia applications over cognitive radio networks," IEEE Transactions on Multimedia, vol.10, no.5, pp.896-909, 2008.
[53]Y. Yao, S.R. Ngoga, D. Erman and A. Popescu, "Competition-Based Channel Selection for Cognitive Radio Networks," Proc. IEEE Wireless Communications and Networking Conference (WCNC), pp.1432-1437, 2012.
[54]S. Aslam, A. Shahid and K.G. Lee, "Joint Sensor-Node Selection and Channel Allocation Scheme for Cognitive Radio Sensor Networks," Journal of Internet Technology (JIT), vol.14, no.3, pp.453-466, 2013.
[55]IEEE 802.22 Working Group on Wireless Regional Area Networks. http://www.ieee802.org/22/.
[56]ECMA Std. 392 (2012) MAC and PHY for Operation in TV White Space.
|