參考文獻 |
[1] Y. Nishida, U. Tamaki, T. Hamatsu, K. Nagahashi, S. Inaba, and T. Nakatani, “Fish Recognition Method using Vector Quantization Histogram for Investigation of Fishery Resources,” in Proc. Oceans - St. John′s, St. John′s, NL, pp. 1-5, Sept. 2014.
[2] P. X. Huang, B. J. Boom, and R. B. Fisher, “GMM improves the reject option in hierarchical classification for fish recognition,” in Proc. IEEE Winter Conference on Applications of Computer Vision, pp.371-376, March 2014.
[3] 顏寧.(2013). 記錄3.6%黑鮪魚悲歌[Online].Available: http://www.greenpeace.org/taiwan/zh/magazines/issue04/document/
[4] F. Storbeck, and B. Daan, “Fish species recognition using computer vision and a neural network,” Fisheries Research, vol. 51, no. 1, pp. 11-15, Apr. 2001.
[5] W. P. Lee, M. A. Osman, A. Z. Talib, J. C. Burie, J. M. Ogier, K Yahya, J. Mennesson, “Recognition of fish based on generalized color Fourier descriptor,” in Proc. Science and Information Conference , pp. 680-686, July 2015.
[6] 邵廣昭.(2016). 台灣魚類資料庫 [Online]. Available: http://fishdb.sinica.edu.tw/chi/home.php
[7] Stanford Vision Lab. 2014). ImageNet [Online]. Available: http://www.image-net.org/
[8] J. Hu, D Li, Q. Duan, Y. Han, G. Chen, and X. Si, “Fish species classification by color, texture and multi-class support vector machine using computer vision,” Computers and Electronics in Agriculture, vol. 88, pp.133-140, Oct. 2012.
[9] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classitication,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 3, no.6, pp. 610-621, Nov. 1973.
[10] M. C. Chuang, J. N. Hwang, F. F. Kuo, M. K. Shan, and K. Williams, “ Recognizing live fish species by hierarchical partial classification based on the exponential benefit,” in Proc. IEEE International Conference on Image Processing, ICIP, Paris, pp. 5232-5236, Oct 2014.
[11] B.E. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal margin classifiers," in Proc. ACM Conference on Learning Theory, pp. 144-152, July 1992.
[12] A. W. Moore. (2001). “Support Vector Machines”. [Online]. Available: http://www.autonlab.org/tutorials/svm15.pdf. File: svm15.pdf
[13] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data mining and knowledge discovery, vol. 2, no. 2, pp.121-167, Jan. 1998.
[14] Smola, J. Alex, and S. Bernhard, “A tutorial on support vector regression,” Statistics and Computing, vol. 14, no. 3, pp. 199-222, Aug. 2004.
[15] N. Dalal and B.Triggs, “Histograms of Oriented Gradients for Human Detection,” in Proc. IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp.886-893, June 2005.
[16] G. Hoffmann, “Interpolations for Image Warping,” University of Applied Sciences in Emden. 2013
[17] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
[18] C. W. Hsu, C. C. Chang, and C. J. Lin (2016). “A Practical Guide to Support Vector Classification”. [Online]. Available: https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf. File: guide.pdf
[19] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no.1, pp. 62-66, Jan. 1979.
[20] D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC,” Journal of Machine Learning Technologies, vol.2, no. 1, pp. 37-63, Dec. 2007 |