博碩士論文 103523011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.135.212.157
姓名 張朝鈞(Chao-Chun Chang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 台灣近海鮪魚之魚類辨識
(Fish Recognition for Tunas in Adjacent Seas of Taiwan)
相關論文
★ 應用於車內視訊之光線適應性視訊壓縮編碼器設計★ 以粒子濾波法為基礎之改良式頭部追蹤系統
★ 應用於空間與CGS可調性視訊編碼器之快速模式決策演算法★ 應用於人臉表情辨識之強健式主動外觀模型搜尋演算法
★ 結合Epipolar Geometry為基礎之視角間預測與快速畫面間預測方向決策之多視角視訊編碼★ 基於改良式可信度傳遞於同質區域之立體視覺匹配演算法
★ 以階層式Boosting演算法為基礎之棒球軌跡辨識★ 多視角視訊編碼之快速參考畫面方向決策
★ 以線上統計為基礎應用於CGS可調式編碼器之快速模式決策★ 適用於唇形辨識之改良式主動形狀模型匹配演算法
★ 以運動補償模型為基礎之移動式平台物件追蹤★ 基於匹配代價之非對稱式立體匹配遮蔽偵測
★ 以動量為基礎之快速多視角視訊編碼模式決策★ 應用於地點影像辨識之快速局部L-SVMs群體分類器
★ 以高品質合成視角為導向之快速深度視訊編碼模式決策★ 以運動補償模型為基礎之移動式相機多物件追蹤
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 觀察國際間近年研究魚類主題以來,絕大部分都以辨識海洋景觀魚類為主要研究方向,較少研究是以辨識大型經濟魚類做為主題,因此本論文針對台灣近海之四種鮪魚,透過對鮪魚外觀特徵辨識,達成鮪魚和其它十九種非鮪魚的魚類辨識。
本論文在訓練階段時將魚部位手動切割開並個別訓練其對應之分類器(classifier),並以各魚鰭部位之HOG descriptors個別訓練其對應之分類器(classifier),增加分類器對於局部影像特徵的辨識能力。辨識階段以本論文提出之二值投影法(binary projection)將魚類身體外觀三種特徵切割出,再透過Histogram of Oriented Gradients (HOG)將切割後的部位影像抓出其特徵描述子(descriptor),將其結果輸入至訓練階段所得之三種支持向量機分類器(support vector machine),在最後階段時,則整合三個(第一背鰭、第二背鰭、尾鰭)支持向量機分類結果透過投票(majority voting)機制決定是否為所要辨識的鮪魚種類。實驗結果顯示,四種鮪魚之平均辨識率約為72%,若只採用第二背鰭分類器,則辨識率可上升至80%。
摘要(英) In recent years, most fish recognition algorithm focus on recognizing aquarium fish rather than large commercial fishes. Thus, this thesis focuses on 4 species of tuna in adjacent seas of Taiwan. Through recognizing features of appearance of tuna, the proposed scheme can differentiate 4 species of tuna from 19 species of non-tuna fish.
At the training stage, this thesis segments fish fins manually and train SVM classifiers using the HOG descriptors. Based on the local image features, the method can improve recognition accuracy. In the test stage, this paper proposes to use binary projection for part segmentation. Descriptors of histogram of oriented gradients of three fins are the input of SVM classifiers and the classification results are majority voted for final decisions. Tests show that the recognition accuracy is around 72%. If the classification decision only depends on the feature of the second dorsal fin, the recognition accuracy is around 80%.
關鍵字(中) ★ 鮪魚
★ 魚類辨識
★ 部位切割
★ 梯度向量直方圖
★ 支持向量機
關鍵字(英) ★ Tuna
★ fish recognition
★ part segmentation
★ histogram of oriented gradients
★ support vector machines
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究方法 3
1.4 論文架構 4
第二章 魚類辨識技術之現況 5
2.1 以魚體結構為特徵描述之辨識現況 5
2.2 改善分層分類器的魚類辨識技術現況 8
2.3 總結 10
第三章 支持向量機與梯度向量直方圖(Support Vector Machine and Histogram of Oriented Gradient) 11
3.1 支持向量機(Support Vector Machine) 11
3.1.1 訓練階段(Training Stage) 13
3.1.2 測試階段(Test Stage) 17
3.2 梯度向量直方圖(histogram of oriented gradient) 18
3.3 總結 20
第四章 本論文所提出之台灣近海的四種鮪魚辨識方案 21
4.1系統流程概述 21
4.2 鮪魚辨識之訓練階段 23
4.2.1 雙立方內插法縮放影像大小 23
4.2.2 梯度向量直方圖描述區塊歸一化 24
4.2.3 支持向量機訓練階段 25
4.3 鮪魚辨識之測試階段 26
4.3.1 魚體部位自動切割演算法(Fish Part Segmentation) 26
4.3.2 雙立方內插法縮放自動切割後影像大小 29
4.3.3 梯度向量直方圖影像二值化 29
4.3.4 支持向量機測試階段 32
4.4 總結 32
第五章 實驗結果與討論 33
5.1 實驗影像資料庫參數 33
5.2 魚體部位自動切割之結果分析 36
5.3 梯度向量直方圖參數 44
5.4 辨識系統準確率評測法 45
5.5 辨識結果分析 47
5.5.1 鮪魚三個部位特徵辨識結果分析 47
5.5.2 鮪魚第二背鰭辨識結果分析 51
5.6 總結 52
第六章 結論與未來展望 53
參考文獻 54
參考文獻 [1] Y. Nishida, U. Tamaki, T. Hamatsu, K. Nagahashi, S. Inaba, and T. Nakatani, “Fish Recognition Method using Vector Quantization Histogram for Investigation of Fishery Resources,” in Proc. Oceans - St. John′s, St. John′s, NL, pp. 1-5, Sept. 2014.
[2] P. X. Huang, B. J. Boom, and R. B. Fisher, “GMM improves the reject option in hierarchical classification for fish recognition,” in Proc. IEEE Winter Conference on Applications of Computer Vision, pp.371-376, March 2014.
[3] 顏寧.(2013). 記錄3.6%黑鮪魚悲歌[Online].Available: http://www.greenpeace.org/taiwan/zh/magazines/issue04/document/
[4] F. Storbeck, and B. Daan, “Fish species recognition using computer vision and a neural network,” Fisheries Research, vol. 51, no. 1, pp. 11-15, Apr. 2001.
[5] W. P. Lee, M. A. Osman, A. Z. Talib, J. C. Burie, J. M. Ogier, K Yahya, J. Mennesson, “Recognition of fish based on generalized color Fourier descriptor,” in Proc. Science and Information Conference , pp. 680-686, July 2015.
[6] 邵廣昭.(2016). 台灣魚類資料庫 [Online]. Available: http://fishdb.sinica.edu.tw/chi/home.php
[7] Stanford Vision Lab. 2014). ImageNet [Online]. Available: http://www.image-net.org/
[8] J. Hu, D Li, Q. Duan, Y. Han, G. Chen, and X. Si, “Fish species classification by color, texture and multi-class support vector machine using computer vision,” Computers and Electronics in Agriculture, vol. 88, pp.133-140, Oct. 2012.
[9] R. M. Haralick, K. Shanmugam, and I. Dinstein, “Textural features for image classitication,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 3, no.6, pp. 610-621, Nov. 1973.
[10] M. C. Chuang, J. N. Hwang, F. F. Kuo, M. K. Shan, and K. Williams, “ Recognizing live fish species by hierarchical partial classification based on the exponential benefit,” in Proc. IEEE International Conference on Image Processing, ICIP, Paris, pp. 5232-5236, Oct 2014.
[11] B.E. Boser, I. Guyon, and V. Vapnik, “A training algorithm for optimal margin classifiers," in Proc. ACM Conference on Learning Theory, pp. 144-152, July 1992.
[12] A. W. Moore. (2001). “Support Vector Machines”. [Online]. Available: http://www.autonlab.org/tutorials/svm15.pdf. File: svm15.pdf
[13] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition,” Data mining and knowledge discovery, vol. 2, no. 2, pp.121-167, Jan. 1998.
[14] Smola, J. Alex, and S. Bernhard, “A tutorial on support vector regression,” Statistics and Computing, vol. 14, no. 3, pp. 199-222, Aug. 2004.
[15] N. Dalal and B.Triggs, “Histograms of Oriented Gradients for Human Detection,” in Proc. IEEE International Conference on Computer Vision and Pattern Recognition, vol. 1, pp.886-893, June 2005.
[16] G. Hoffmann, “Interpolations for Image Warping,” University of Applied Sciences in Emden. 2013
[17] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
[18] C. W. Hsu, C. C. Chang, and C. J. Lin (2016). “A Practical Guide to Support Vector Classification”. [Online]. Available: https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf. File: guide.pdf
[19] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no.1, pp. 62-66, Jan. 1979.
[20] D. M. W. Powers, “Evaluation: from precision, recall and F-measure to ROC,” Journal of Machine Learning Technologies, vol.2, no. 1, pp. 37-63, Dec. 2007
指導教授 唐之瑋(Chih-Wei Tang) 審核日期 2016-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明