博碩士論文 103521039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.216.92.5
姓名 沈韋廷(Wei-ting Shen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 鈍角三角形的邊線向量與內部向量探討及其在二維元件模擬之應用
(Finding internal vector from the edge vector in obtuse triangle element for 2D Semiconductor Device Simulation)
相關論文
★ 表面電漿共振效應於光奈米元件之數值研究★ 金氧半電容元件的暫態模擬之數值量測
★ 雙載子電晶體在一維和二維空間上模擬的比較★ 改善後的階層化不完全LU法及其在二維半導體元件模擬上的應用
★ 一維雙載子接面電晶體數值模擬之驗證及其在元件與電路混階模擬之應用★ 階層化不完全LU法及其在準靜態金氧半場效電晶體電容模擬上的應用
★ 探討分離式簡化電路模型在半導體元件模擬上的效益★ 撞擊游離的等效電路模型與其在半導體元件模擬上之應用
★ 二維半導體元件模擬的電流和電場分析★ 三維半導體元件模擬器之開發及SOI MOSFET特性分析
★ 元件分割法及其在二維互補式金氧半導體元件之模擬★ 含改良型L-ILU解法器及PDM電路表述之二維及三維元件數值模擬器之開發
★ 含費米積分之高效率載子解析模型及其在元件模擬上的應用★ 量子力學等效電路模型之建立及其對元件模擬之探討
★ 適用於二維及三維半導體元件模擬的可調變式元件切割法★ 整合式的混階模擬器之開發及其在振盪電路上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文中,我們利用C語言模擬半導體元件特性。發現在切割網格時會如果出現180°切角,這會造成模擬上的誤差,而為了減少這誤差產生,我們將180°切角切割成不同角度,其中會出現鈍角三角形網格,所以我們開發了鈍角三角形模組來解決這問題。先利用單一鈍角三角形模組驗證,再經由模擬電阻與實際電阻值比較,及二極體的模擬驗證來確保模擬的正確性,最後應用在包含鈍角三角形網格的相關應用,例如:MOS電容器、180°切角的改善、局部網格加密時會出現的180°切角問題,都不會造成過大的誤差,並且成功改善了鈍角三角形網格模擬上的誤差。
摘要(英) In this thesis, we use C language to simulate semiconductor device characteristics. We found that the 180°-angle mesh will cause simulation problem. It may have a triangle mesh with an obtuse angle if we divide the 180° angle into two angles. In order to simulate the obtuse triangle mesh, it’s necessary to develop an obtuse triangle model for 2D device simulation. The validity of a single obtuse triangle model is verified by numerical experiment. We simulate a resister and compare its result to the theoretical value. Finally, applying this obtuse model to many applications, such as MOS capacitor, 180°-angle problem, in mesh regrid.
關鍵字(中) ★ 半導體模擬
★ 二維
關鍵字(英) ★ semiconductor simulation
★ two-dimensional
論文目次 摘要...............................................i
Abstract..........................................ii
圖目錄.............................................iv
表目錄.............................................vi
第一章 簡介.........................................1
第二章 二維鈍角三角形模組等效電路開發與驗證.............2
2.1 簡單網格分析概念.................................2
2.2 封閉面規劃及討論.................................3
2.2.1利用外心定義封閉面..............................3
2.2.2外心在鈍角三角形出現的問題.......................5
2.2.3利用重心定義封閉面..............................6
2.3 利用邊線電場求其內部電場..........................6
2.4 二維數值鈍角三角形驗證...........................12
2.4.1二維數值鈍角三角形內電場驗證.....................12
2.4.2二維數值鈍角三角形內電子流密度與電洞流密度驗證.....16
第三章 半導體元件特性模擬與驗證.......................21
3.1簡單電阻模擬與分析................................21
3.2簡單電阻模擬之外心與重心比較.......................23
3.3二極體接面特性模擬與討論...........................25
第四章 半導體元件應用與討論...........................30
4.1 MOS電容器特性模擬................................31
4.2 180°切角的改善...................................34
4.3 尺寸微縮時出現鈍角三角形問題.......................38
第五章 結論..........................................39
參考文獻.............................................40
參考文獻 [1]D R. E. Bank and D. J. Rose, “Semiconductor device simulation,” IEEE Trans, Electron Devices vol. 30, no. 9, Sep. 1983.
[2]M. Bern, D. Eppstein, and J. Gilbert, “Provably good mesh generation,” J. Comput. System Sci., 48 (3) (1994), pp. 384–409
[3]D. A. Neamen, Semiconductor physics and devices, 3rd ed. McGraw-Hill Companies Inc., New York, 2003.
[4]R. E. Bank, D. J. Rose, and W. Fichtner, “Numerical methods for semiconductor device,” IEEE Trans, Electron Devices, vol. 30, no. 9, Sep. 1983.
[5]G. Garreton, L. Villablanca, N. Strecker, and W. Fichtner, “A new approach for 2-D mesh generation for complex device structures,” IEEE Numerical Modeling of Processes and Devices for Integrated Circuits, 1994.
[6]M. J. Zeng, “Development of Triangular element and its applications to arbitrary 2D Semiconductor device,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2014.
[7]M. B. Patil, “New discretization scheme for two-dimensional semiconductor device simulation on triangular grid,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 17, no. 11, pp. 1160-1165, Nov. 1998.
[8]Z. Z. Lin, “Development of Obtuse triangle element and its applications to 2D Semiconductor device,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2015.
[9]S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. John Wiley & Sons Inc., New Jersey, 2007.
[10]C. C. Hu, Modern Semiconductor Devices for Integrated Circuits, Pearson College Inc., London, 2010
[11]J. Cervenka, W. Wessner, and E. A. Ani, T. Grasser, “Generation of unstructured meshes for process and device simulation by means of partial differential equations,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 10, Oct. 2006.
[12]D. J. Cummings, M. E. Law, S. Cea, and T. Linton, “Comparison of discretization methods for device simulation,” Proc. SISPAD, pp. 119-122, 2009.
[13]S. Micheletti, “Stabilized finite elements for semiconductor device simulation,” Comput & Visual Sci., vol. 3, pp. 177-183, 2001.
[14]S. Holst, A. Ju¨ngel, and P. Pietra, “Mixed finite-element discretization of the energy-transport model for semiconductors,” SIAM J. Sci. Comput. vol. 24, no. 6, pp. 2058–2075. 2003.
[15]S. Holst, A. Ju¨ngel, and P. Pietra, “An adaptive mixed scheme for energy-transport simulations of field-effect transistors,”SIAM J. Sci. Comput. vol. 27, no. 5, pp. 1689–1716. 2004.
[16]F. Rudolf, J. Weinbub, K. Rupp, A. Morhammer, and S. Selberherr, “Template-Based mesh generation for semiconductor devices,” Proc. SISPAD, pp. 217-220, 2014.
[17]M. Lundstrom, and J. Guo, “Nanoscale transistor: device physics, modeling, and simulation,” Springer, New York, 2006.
[18]C. C. Lin, and M. E. Law, “2-D mesh adaption and flux discretizations for dopant diffusion modeling,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 2, Feb. 1996.
[19]R. Dang, K. Matsushita, and H. Hayashi, “A highly efficient adaptive mesh approach to semiconductor device simulation-application to impact ionization analysis,” IEEE Trans, Magnetics, vol. 27, no. 5, Sep. 1991.
[20]C. Heitzinger, A. Sheikholeslami, J. M. Park, and S. Selberherr, “A method for generating structurally aligned grids for semiconductor device simulation,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 10, Oct. 2005.
指導教授 蔡曜聰(Yao-Tsung Tsai) 審核日期 2016-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明