博碩士論文 103521044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:3.144.17.207
姓名 張博堯(Po-Yao Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 增點式正方形網格開發及其在二維半導體元件模擬之應用
(Development of point-added square element and its applications to 2-D semiconductor device simulation)
相關論文
★ 表面電漿共振效應於光奈米元件之數值研究★ 金氧半電容元件的暫態模擬之數值量測
★ 雙載子電晶體在一維和二維空間上模擬的比較★ 改善後的階層化不完全LU法及其在二維半導體元件模擬上的應用
★ 一維雙載子接面電晶體數值模擬之驗證及其在元件與電路混階模擬之應用★ 階層化不完全LU法及其在準靜態金氧半場效電晶體電容模擬上的應用
★ 探討分離式簡化電路模型在半導體元件模擬上的效益★ 撞擊游離的等效電路模型與其在半導體元件模擬上之應用
★ 二維半導體元件模擬的電流和電場分析★ 三維半導體元件模擬器之開發及SOI MOSFET特性分析
★ 元件分割法及其在二維互補式金氧半導體元件之模擬★ 含改良型L-ILU解法器及PDM電路表述之二維及三維元件數值模擬器之開發
★ 含費米積分之高效率載子解析模型及其在元件模擬上的應用★ 量子力學等效電路模型之建立及其對元件模擬之探討
★ 適用於二維及三維半導體元件模擬的可調變式元件切割法★ 整合式的混階模擬器之開發及其在振盪電路上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們主要使用C語言,建立出一套可以更精確模擬半導體元件,其為增點式正方形網格。用來提升模擬二維半導體元件之不規則接面處的準確度,並且比較傳統之正方形網格與增點式正方形網格之差異性,接著使用簡易電阻作理論計算,再與模擬結果相互比較來驗證,即可得知此架構是否設計正確並可行。最後,我們將增點式正方形網格應用在不規則形狀之半導體元件及應用在MOS電容器結構上,並加以探討在半導體元件上之不規則接面處,其臨限電壓與能帶曲線圖的變化與影響。
摘要(英) In this thesis, we use C++ language to develop a new point-added square element for 2-D device simulation. It is used to improve the simulation of 2-D semiconductor device on irregular junction. Besides, we compare the difference between the traditional square element and point-added square element, and a simple resistor will be used to verify our result with theoretical value. After finishing these process, the point-added square element can be used in our simulation. In addition, we use the point-added square element to apply on the special semiconductor device, such as the resistor that it looks like a ring shape. We can also apply this new element on MOS capacitor. At last, we discuss the variation of threshold voltage and energy band on irregular junction of semiconductor device.
關鍵字(中) ★ 網格
★ 半導體
★ 模擬
關鍵字(英) ★ mesh
★ semiconductor
★ simulation
論文目次 摘要............................................i
Abstract.......................................ii
目錄...........................................iii
圖目錄..........................................iv
表目錄..........................................i
第一章 簡介....................................1
第二章 二維網格與等效模型分析....................3
2-1. 二維網格分析概念..........................3
2-2. 增點式正方形網格結構定義..................9
第三章 增點式正方形網格探討與電阻驗證............16
3-1. 增點式正方形網格與正方形網格之比較.........16
3-2. 簡易電阻於直角座標下之驗證................18
3-3. 內嵌氧化層之方形電阻於直角座標下之驗證.....20
第四章 增點式正方形網格應用於二維半導體元件.......23
4-1. 環型半導體之應用與分析...................23
4-2. MOS電容器之結構與分析....................34
4-3. MOS電容器之臨限電壓隨結構改變之分析.......37
第五章 結論....................................42
參考文獻........................................44
參考文獻 [1]M. J. Zeng, “Development of Triangular element and its applications to arbitrary 2D Semiconductor device,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2014.
[2]C. H. Lee, “Development of 3D Trapezoidal Model and its Application to Semiconductor Device Simulation,”M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2015.
[3]D. A. Neamen, Semiconductor physics and devices, 3rd ed., McGraw-Hill Companies Inc., New York, 2003.
[4]S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. John Wiley & Sons, Inc. New Jersey, 2007.
[5]C. C. Lin and M. E. Law, “2-D mesh adaption and flux discretization for dopant diffusion modeling,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 2, pp. 194-207, 1996.
[6]B. Baccus, D. Collard, E. Dubois, “Adaptive Mesh Refinement for Multilayer Process Simulation Using the Finite Element Method,” IEEE Trans, Computer-Aided Design, vol. 11. no. 3. 1992.
[7]W. M. Coughran Jr., M. R. Pinto, and R. K. Smith, "Adaptive grid generation for VLSI device simulation", IEEE Trans. Computer-Aided Design, vol. 10, pp. 1259, 1991
[8]M. Bern, D. Eppstein, and J. Gilbert, "Probably good mesh generation", J. Comput. Syst. Sci., vol. 48, pp. 384-409, 1994
[9]G. Garreton, L. Villablanca, N. Strecker, W. Fichtner, “A New Approach for 2-D Mesh Generation for Complex Device Structures,” IEEE, Numerical Modeling of Processes and Devices for Integrated Circuits, pp. 159 – 162, Jun. 1994.
[10]Sangho Yoon , “A mesh generation algorithm for complex geometry”, IEEE, Proc. SISPAD , pp. 218 – 221, 2000.
[11]Florian Rudolf , “Template-based mesh generation for semiconductor devices”, IEEE, Proc, SISPAD, pp. 217 – 220, Sept. 2014
[12]Sebastian Eiser , “Non-conforming meshes in multi-scale thermo-mechanical Finite Element Analysis of semiconductor power devices”, IEEE, Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), pp. 1 – 7, 2013.
[13]W. Fichtner, “New developments and old problems in grid generation and adaptation for TCAD applications”, IEEE, Simulation of Semiconductor Processes and Devices, pp. 67 – 70, 1999.
[14]Koichi Fukuda, “A moving mesh method for device simulation”, IEEE, International Conference on Simulation of Semiconductor Processes and Devices, pp. 409 – 412, Sept. 2015.
[15]Karl Rupp, “Cell-centered finite volume schemes for semiconductor device simulation”, IEEE, International Conference on Simulation of Semiconductor Processes and Devices, pp. 365 – 368, Sept. 2014.
[16]Daniel J. Cummings , “Comparison of Discretization Methods for Device Simulation”, IEEE, International Conference on Simulation of Semiconductor Processes and Devices, pp. 1 – 4, Sept. 2009.
[17]B. Afeyan , “Modeling and design of optical semiconductor devices using FEMLAB, Wavelets and adaptivity”, IEEE, Numerical Simulation of Semiconductor Optoelectronic Devices, pp. 63 – 67, Oct. 2003.
[18]C. Heitzinger, A. Sheikholeslami, J. M. Park, and S. Selberherr, “A method for generating structurally aligned grids for semiconductor device simulation,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 10, Oct. 2005.
[19]M. Lundstrom, and J. Guo, “Nanoscale transistor: device physics, modeling, and simulation,” Springer, New York, 2006.
[20]S. Micheletti, “Stabilized finite elements for semiconductor device simulation,” Comput & Visual Sci., vol. 3, pp. 177-183, 2001.
指導教授 蔡曜聰(Yao-Tsung Tsai) 審核日期 2016-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明