參考文獻 |
[1] Lon E. Bell, “Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems”, Science 321, 1457-1461 (2008).
[2] Y. G. Gurevich and G. N. Logvinov, “Physics of Thermoelectric Cooling”, Semicond. Sci. Technol. 20, R57 (2005).
[3] A. F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling, Infosearch Limited, London (1957).
[4] G. Grosso, G. P. Parravicini, Solid State Physics, Academic Press, Amsterdam (2000).
[5] Arun Majumdar, “Thermoelectricity in Semiconductor Nanostructures”, Science 303, 777-778 (2004).
[6] Francis J. DiSalvo, “Thermoelectric Cooling and Power Generation”, Science 285, 703-706 (1999).
[7] M. Zebarjadi, K. Esfarjania, M. S. Dresselhaus, Z. F. Ren, and G. Chen, “Perspectives on thermoelectrics: from fundamentals to device applications”, Energy Environ. Sci. 5, 5147 (2012).
[8] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yang, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, “ High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys”, Science 320, 634-638 (2008).
[9] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, “Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-type Silicon Germanium Bulk Alloys”, Nano Lett. 8, 4670-4674 (2008).
[10] L. D. Hicks, and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimension Conductor”, Phys. Rev. B 47, 16631(R) (1993).
[11] P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, John Wiley & Sons (2005).
[12] Y. Yu. Peter, Effect of Quantum Confinement on Electrons and Phonons in Semiconductors, Fundamental of Semiconductors, 469-551, Springer, Berlin, Heidelberg (2010).
[13] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, Advanced Materials 19, 1043-1053 (2007).
[14] T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices”, Science 297, 2229-2232 (2002).
[15] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. –K. Yu, W. A. Goddard III, and J. R. Health, “Silicon Nanowires as Efficient Thermoelectric Materials”, Nature 451, 168-171 (2008).
[16] David M.-T. Kuo, and Yia-Chung Chang, “Thermoelectric Properties of a Quantum Dot Array Connected to Metallic Electrodes”, Nanotechnology 24, 175403 (2013).
[17] N. A. Roberts, and D. G. Walker, “A Review of Thermal Rectification Observations and Models in Solid Materials”, International Journal of Thermal Sciences 50, 648-662 (2011).
[18] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, “Solid-State Thermal Rectifier”, Science 314, 1121-1124 (2006).
[19] M. J. Martinez-Pérez, Antonio Fornieri, and Francesco Giazotto, “Rectification of Electronic Heat Current by a Hybrid Thermal Diode”, Nature Nanotechnology 10, 303-307 (2015).
[20] David M.-T. Kuo, and Yia-Chung Chang, ”Thermoelectric and Thermal Rectification Properties of Quantum Dot Junctions”, Phys. Rev. B 81, 205321 (2010).
[21] David M.-T. Kuo, ” Thermoelectric Properties of Double Quantum Dots Embedded in a Nanowire”, Jpn. J. Appl. Phys. 50, 025003 (2011).
[22] B. Sothmann, R. Sánchez, and A. N. Jordan, ”Thermoelectric Energy Harvesting with Quantum Dots”, Nanotechnology 26, 032001 (2015).
[23] M. Esposito, K. Lindenberg, and C. Van den Broeck, “Thermoelectric Efficiency at Maximum Power in a Quantum Dot”, EPL (Europhysics Letters) 85, 60010 (2009).
[24] M. Esposito, R. Kawai, K. Lindenberg, and C. Van den Broeck, “Quantum-dot Carnot Engine at Maximum Power”, Phys. Rev. E 81, 041106 (2010).
[25] R. Sánchez, and M. Büttiker, “Optimal Energy Quanta to Current Conversion”, Phys. Rev. B 83, 085428 (2011).
[26] Y. S. Liu, X. F. Yang, X. K. Hong, M. S. Si, and Y. Guo, “A High-efficiency Double Quantum Dot Heat Engine” Appl. Phys. Lett. 103, 093901 (2013).
[27] A.-P. Jauho, N. S. Wingreen, and Y. Meir, “Time-dependent Transport in Interacting and Noninteracting Resonant-tunneling Systems”, Phys. Rev. B 50, 5528 (1994).
[28] David M.-T. Kuo, and Yia-Chung Chang, “Thermoelectric Properties of a Semiconductor Quantum Dot Chain Connected to Metallic Electrodes”, arXiv:1209.0506 (2012).
[29] Chih-Chieh Chen, David M.-T. Kuo, and Yia-Chung Chang, “Quantum Interference and Structure-dependent Orbital-filling Effects on the Thermoelectric Properties of Quantum Dot Molecules”, Phys. Chem. Chem. Phys. 17, 19386 (2015).
[30] David M.-T. Kuo, and Yia-Chung Chang, “Bipolar Thermoelectric Effect in a Serially Coupled Quantum Dot System”, Jpn. J. Appl. Phys. 50, 105003 (2011).
[31] David M. -T. Kuo, and Yia-Chung Chang, “Long-distance Coherent Tunneling Effect on the Charge and Heat Currents in Serially Coupled Triple Quantum Dots”, Phys. Rev. B 89, 115416 (2014).
[32] David M. -T. Kuo, Shiue-Yuan Shiau, and Yia-Chung Chang, “Theory of Spin Blockade, Charge Ratchet Effect, and Thermoelectrical Behavior in Serially Coupled Quantum Dot System”, Phys. Rev. B 84, 245303 (2011).
[33] P. Ben -Abdallah, and Svend -Age Biehs, “Phase-change Radiative Thermal Diode”, Appl. Phys. Lett. 103, 191907 (2013).
[34] J. Zhu, K. Hippalgaonkar, S. Shen, K. Wang, Y. Abate, S. Lee, J. Wu, X. Yin, A. Majumdar, and X. Zhang, “Temperature-gated Thermal Rectifier for Active Heat Flow Control”, Nano Lett. 14, 4867-4872 (2014).
[35] Yen -Chun Tseng, David M. -T. Kuo, Yia -Chung Chang, and Yan -Ting Lin, “Heat Rectification Effect of Serially Coupled Quantum Dots”, Appl. Phys. Lett. 103, 053108 (2013). |