博碩士論文 103521072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.137.218.83
姓名 朱翊豪(Yi-Hao Jhu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用磁通補償器實現永磁同步馬達之直接轉矩控制於低速改善
(The DTC of Permanent Magnet Synchronous Motor in Low Speed Condition Improvement Using Flux Compensator)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統
★ 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用
★ 四軸飛行器之偵測應用及其無線充電系統之探討★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
★ 模糊控制與灰色預測應用於隧道型機械手臂之分析★ 模糊滑動模態控制器之設計及應用於非線性系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文旨在改善傳統直接轉矩控制在基本架構上的控制缺點,其架構主要是控制定子磁通與轉子磁通向量間的差角關係,向量差角又可稱為轉矩角,以直覺化方式的直接控制轉矩,有效改善傳統直接轉矩控制的缺點。由於傳統直接轉矩控制的切換是透過6個有效向量以及2個無效向量切換,且電壓切換表設計特色在於每一個取樣周期內開關保持全開或全關,因此能夠獲得快速的轉矩響應,但是相對造成轉矩漣波大與噪音的產生,且開關切換頻率取決於系統的響應速度。因此以直接轉矩之空間向量切換方法透過將6個有效向量依據電壓控制量合成適當的輸出調變量,因此可以得到平滑的電壓向量切換使磁通向量圖型更近似一個圓。控制架構主要將估測的定子磁通向量解偶成大小與角度並依此做為控制基礎,在操作於定子磁通命令下,透過控制定子磁通的大小與估測角度實現轉矩角的控制。由於定磁通操作於定電壓,在暫態過程並不適用定磁通操作,並且磁通誤差影響空間向量脈寬調變的電壓調變量,因此在暫態過程中提出以轉速誤差作為模糊控制的輸入,經由模糊化與解模糊化即可以得到磁通的補償值。將控制架構實現在永磁同步馬達的速度控制,透過轉矩響應以及定子磁通響應驗證系統效能。論文中所提出的方法,透過PSIM電路分析軟體的模擬驗證之後,將最後的結果以德州儀器TMS320F28335數位訊號處理器作為系統的訊號運算核心,實現高速且精確的控制系統。
摘要(英) The purpose of this research is to improve the drawbacks of classical direct torque control (Classical-DTC) in the switching table scheme. The approach is based on torque angle control, which is based on the relationship between the stator flux and rotor flux space vectors of the intuition control system. Classical-DTC control uses six valid vectors and two useless vectors on a switching table. However, a feature of this table is that it is either fully open or fully closed in one sampling frequency and achieves fast torque response, which can cause high torque ripple and noise. It is important that the switching frequency be related to system responses. In order to reduce stator flux ripple and torque ripple, the space-vector pulse width modulation (SVPWM) generates different switching states for each sampling time and adapts to overcome the aforementioned problems, especially flux ripple and torque ripple. In the proposed techniques, stator flux amplitude and angle are decoupled from the estimated flux vector. By controlling the reference flux amplitude and angle, torque angle control can be realized. The reference flux is kept constant in this paper. A fuzzy controller is used to compensate for reference flux in order to lessen errors from the transient state response. Speed error is the input of fuzzy controller and the defuzzified value is used to compensate for the reference flux. To demonstrate this method, it was installed on a permanent magnet synchronous motor (PMSM) controller. The simulation result is verified by a PSIM simulator. Finally, the control system is implemented by a digital signal processor TMS320F28335 to achieve a high speed and accurate control system.
關鍵字(中) ★ 直接轉矩之空間向量切換
★ 模糊控制
★ 表貼式永磁同步馬達
★ 轉矩角
★ 磁通補償器
關鍵字(英) ★ DTC-SVPWM
★ Fuzzy
★ SPMSM
★ Torque angle
★ Flux Compensator
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xii
第一章、緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 4
1-3 成果與主要貢獻 5
1-4 章節大綱 6
第二章、永磁同步馬達介紹 8
2-1 永磁同步馬達結構 8
2-2 向量控制 10
2-3 永磁同步馬達數學模型 13
2-4 座標系統轉換 18
第三章、硬體設備架構介紹 25
3-1 永磁同步馬達控制晶片 25
3-2 TMS320F28335周邊功能 28
3-3 永磁同步馬達硬體介紹 37
3-4 永磁同步馬達參數量測 47
第四章、PMSM直接轉矩控制 49
4-1 轉矩數學方程式分析 51
4-2 向量控制 55
4-2-1 磁通磁滯比較器 56
4-2-2 轉矩磁滯比較器 60
4-2-3 電壓向量切換表 60
4-3 速度迴路PI控制 63
4-4 永磁同步馬達之直接轉矩控制模擬與實驗分析 66
4-4-1 PSIM模擬軟體 66
4-4-2 永磁同步馬達之直接轉矩控制架構模擬分析 67
4-4-3 模擬結果 69
4-4-4 永磁同步馬達之傳統直接轉矩實驗 76
4-4-5 傳統直接轉矩控制實驗結果分析 85
第五章、改良式直接轉矩架構之轉矩角控制 86
5-1 改良式直接轉矩架構 87
5-1-1 SVPWM向量合成原理與公式推導 88
5-1-2 定子磁通估算 98
5-1-3 電壓估測 106
5-1-4 轉矩閉迴路PI控制 108
5-2 模糊控制應用於磁通補償 114
5-2-1 模糊理論 115
5-2-2 集合型態 116
5-2-3 模糊控制器設計 118
5-3 永磁同步馬達之磁通補償策略控制實驗分析 126
5-3-1 永磁同步馬達之實驗結果 127
5-3-2 改良式直接轉矩控制架構實驗結果分析 138
第六章、結論與建議 140
參考文獻 142
附錄A 146
參考文獻 [1] Marian P. Kazmierkowski, R. Krishnan and Frede Blaabjerg, Control in Power Electronics, Academic Press, 2002.
[2] Texas Instruments, Sensorless Field Oriented Control of 3-Phase Permanent Magnet Synchronous Motors.
[3] G. K. Singh, K. Nam and S. K. Lim, “A Simple Indirect Field-Oriented Control Scheme for Multiphase Induction Machine”,IEEE Trans. on Industrial Electronics, vol. 52, no. 4, pp.1177-1184, 2005.
[4] Xudong Wang, Ning Liu and Risha Na, “Simulation of PMSM Field-Oriented Control Based on SVPWM”, IEEE Conf. on Vehicle Power and Propulsion, pp.1465-1469, Sep. 2009.
[5] M. Uddin and Muhammad Hafeez, “FLC-Based DTC Scheme to Improve the Dynamic Performance of an IM Drive”,IEEE Trans. on Industry Application, vol. 48, no. 2, pp.823-831, 2012.
[6] Domenico Casadei, Francesco Profumo, Giovanni Serra and Angelo Tani, “FOC and DTC: Two Viable Schemes for Induction Motors Torque Control”, IEEE Trans. on Power Electronics, vol. 17, no. 5, pp.779-787, 2002.
[7] Manuele Bertoluzzo, Giuseppe Buja and Roberto Menis, “Direct Torque Control of an Induction Motor Using a Single Current Sensor”, IEEE Trans. on Industrial Electronics, vol. 53, no. 3, pp.778-784, June 2006.
[8] Yen-Shin Lai, Jian-Ho Chen, “A New Approach to Direct Torque Control of Induction Motor Drives for Constant Inverter Switching Frequency and Torque Ripple Reduction”, IEEE Trans. on Energy Conversion, vol. 16, no. 3, pp.220-227, September 2001.
[9] Xin Qiu, Wenxin Huang and Feifei Bu, “An Improved Direct Torque Control Method for PMSM”, IEEE Conf. on APEC, pp.2421-2424, March 2014.
[10] Marcin Żelechowski, “Space Vector Modulated-Direct Torque Controlled (DTC-SVM) Inverter-Fed Induction Motor Drive”, Warsaw University of Technology, Ph.D. Thesis, 2005.
[11] Yuttana Kumsuwan, Suttichai Premrudeepreechacharn and Hamid A. Toliyat, “Modified Direct Torque Control Method for Induction Motor Drives Based on Amplitude and Angle Control of Stator Flux”, ELSEVIER Trans. on Electric Power Systems Research, vol. 78, pp.1712-1718, October 2008.
[12] Atsushi Shinohara, Yukinori Inoue, Shigeo Morimoto and Masayuki Sanada, “Comparison of Stator Flux Linkage Estimators for PWM-Based Direct Torque Controlled PMSM Drives”, IEEE Conf. on PEDS, pp.1035-1040, June 2015.
[13] Selin Ozcira, Nur Bekiroglu, “Direct Torque Control of Permanent Magnet Synchronous Motors”, Yildiz Technical University, February, 2011.
[14] Jaswant Singh1, B. Singh and S.P. Singh, “Performance Evaluation of Direct Torque Control with Permanent Magnet Synchronous Motor”, S-JPSET Trans. on Applied Sciences, Engineering and Technology, Vol. 2, Issue 2, pp.25-35, 2011.
[15] 趙健利、鍾鴻源,“永磁同步馬達智慧型控制之研究”,國立中央大學電機研究所,民國102年7月。
[16] DUBEY,Power Semiconductor Controlled Drives,羅永昌,電動機控制,高立圖書,95年。
[17] 黃茂庭、張簡樂仁,“以模糊自調式技術實現永磁同步電動機之速度控制”,國立成功大學電機研究所,民國97年7月。
[18] 高子胤、林法正,“以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發”,國立中央大學電機研究所,民國100年7月。
[19] Shigeo Morimoto, Keisuke Kawamoto, Masayuki Sanada and Yoji Takeda, “Sensorless Control Strategy for Salient-Pole PMSM Based on Extended EMF in Rotating Reference Frame”, IEEE Trans. on Industry Application, vol. 38, no. 4, Jul. 2002.
[20] 章志賢、徐國鎧,“高頻訊號注入法於表面黏著式永磁同步馬達之無感測驅動器實現”,國立中央大學電機研究所,民國100年6月。
[21] 劉昌煥,交流電動機控制,第四版,東華書局,2005。
[22] DAVID OCEN, “Direct Torque Control of a Permanent Magnet synchronous Motor”, KTH Royal Institute of Technology, 2005.
[23] TMS320x2833x, 2823x Enhanced Pulse Width Modulator (ePWM) Reference Guide (Rev. A).
[24] TMS320x2833x, 2823x Enhanced Quadrature Encoder Pulse Module (eQEP) Reference Guide (Rev. A).
[25] TMS320x2833x, 2823x DSC Serial Peripheral Interface (SPI) Reference Guide (Rev. A).
[26] TMS320x2833x, 2823x System Control and Interrupts Reference Guide (Rev. D).
[27] Analog Devices, AD7606 Datasheet.
[28] Microchip, MCP4922 datasheet.
[29] MITSUBISHI ELECTRIC, DIPIPM Ver.3 APPLICATION NOTE, 2009.
[30] 林正浩、劉志文,“三相感應電動機之DSP直接轉矩控制系統研製”,國立台灣大學電機工程學研究所,民國90年6月。
[31] 李毓彥、賴炎生,“以微控器研製永磁同步馬達的向量控制驅動器”,國立臺北科技大學電機研究所,民國98年6月。
[32] 王衍凱、姜嘉瑞,“以擴展型卡爾曼濾波器為基礎之感應馬達無感測器控制及定子與轉子阻抗估測”,國立台灣科技大學機械研究所,民國99年7月。
[33] K Narasimhaiah Achari, B Gururaj, D V Ashok Kumar, M Vijaya Kumar, “A Novel MATLAB/Simulink Model of PMSM Drive using Direct Torque Control with SVM”, IJCA Conf. on ICETT, no 1, pp.34-39, 2013.
[34] G. Sree Lakshmi, S. Kamakshaiah and G. Tulasi Ram Das, “Simulation of DTC-CBSVPWM fed SPMSM Drive with Five-level Diode Clamped Inverter”, IJCA Conf., vol.87, no. 1, pp.9-16, February 2014.
[35] Bimal K. Bose, Modern Power Electronics and AC Drives, 1 edition, Prentice Hall, 2001.
[36] 陳泓傑、徐國鎧,“直接轉矩控制於永磁同步馬達之轉矩漣波改善研究”,國立中央大學電機工程系,民國96年7月。
[37] L. Zhong, M. F. Rahman, W. Y. Hu and K. W. Lim, “Analysis of Direct Torque Control in Permanent Magnet Synchronous Motor Drives”, IEEE Trans. on Power Electronics, vol. 12, no. 3, pp.528-536, May 1997.
[38] Yunchang Kwak, Jin-Woo Ahn and Dong-Hee Lee, “A DTC-PWM Control Scheme of PMSM based on 12-Sectors Division and Speed Information”, IEEE Conf. on IPEC, pp.2693-2699, May 2014.
[39] P. L. Jansen and R. D. Lorenz, “A Physically Insightful Approach to the Design and Accuracy Assessment of Flux Observers for Field Oriented Induction Machine Driver”, IEEE Trans. on Industry Applications, Vol.30, No.1, pp.101-110, Jan. 1994.
[40] T. J. Vyncke, Rene K. Boel and J. A. A. Melkebeek, “On the stator flux linkage estimation of an PMSM with Extended Kalman Filters”, IET Int. Conf. on PEMD, pp.1-6, Apr. 2010.
[41] Younes Sangsefidi, Saleh Ziaeinejad, Ali Mehrizi-Sani, Hamidreza Pairodin-Nabi and Abbas Shoulaie, “Estimation of Stator Resistance in Direct Torque Control Synchronous Motor Drives”, IEEE Trans. on Energy Conversion, Vol.30, pp.626-634, Jun. 2015.

[42] J. Hu and B. Wu, “New integration algorithms for estimating motor flux over a wide speed range”, IEEE Trans. on Power Electron., Vol. 13, No. 5, pp. 969-977, Sept. 1998.
[43] 江坤信、徐國鎧,“感應馬達之直接轉矩控制之低轉速驅動補償策略”,國立中央大學電機工程系,民國91年6月。
[44] 許效豪、劉添華,“無轉軸偵測元件同步磁阻電動機直接轉矩控制驅動系統之研究”,國立臺灣科技大學電機工程系,民國93年。
[45] Yukinori Inoue, Shigeo Morimoto and Masayuki Sanada, “Examination and Linearization of Torque Control System for Direct Torque Controlled IPMSM”, IEEE Trans. on Industry Applications, Vol. 46, No. 1, pp.159-166, Jan. 2010
[46] 王文俊,認識Fuzzy,第三版,全華書局,2012。
[47] 王進德、蕭大全,類神經網路與模糊控制理論入門,修訂版,全華書局,2005。
[48] H. H. Choi, H. M. Yun and Y. Kim, “Implementation of Evolutionary Fuzzy PID Speed Controller for PM Synchronous Motor”, IEEE Trans. on Industrial Informatics, Vol. 11, No. 2, pp. 540-547, Apr. 2015.
[49] A. Nait Seghir, T. Henni and M. Azira, “Fuzzy and Adaptive Fuzzy PI Controller Based Vector Control for Permanent Magnet Synchronous Motor”, IEEE conf. on ICNSC, pp.491-496, Apr. 2013.
[50] Hicham Chaoui and Pierre Sicard, “Adaptive Fuzzy Logic Control of Permanent Magnet Synchronous Machines With Nonlinear Friction”, IEEE Trans. on Industrial Electronics, Vol. 59, No. 2, pp.1123-1133, Feb. 2012.
[51] Yen-Shin Lai, Juo-Chiun Lin , “New Hybrid Fuzzy Controller For Direct Torque Control Induction Motor Drives”, IEEE Trans. on Power Electronics, Vol. 18, No. 5, pp.1211-1219, Sept. 2003.
[52] T. Zhao, F. Xiang, J. Wang, G. Zhang and J. Mao, “Research on Speed Sensorless Direct Torque Fuzzy Control of Induction Motors”, IEEE Conf. on ICECS, pp.1-5, Feb. 2014.
[53] 李允中、王小璠、蘇木春,模糊理論及其應用,修訂版,全華書局,2008。
指導教授 鍾鴻源(Hung-Yuan Chung) 審核日期 2016-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明