博碩士論文 104522604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.134.104.173
姓名 哈納斯(HANAS SUBAKTI)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以標記為基礎之網實擴增實境導覽系統
(A Marker-Based Cyber Physical Augmented-Reality Guidance System)
相關論文
★ 以IEEE 802.11為基礎行動隨意無線網路之混合式省電通訊協定★ 以范諾圖為基礎的對等式網路虛擬環境相鄰節點一致性研究
★ 行動隨意網路可調適及可延展之位置服務協定★ 同儕式網路虛擬環境高效率互動範圍群播
★ 巨量多人線上遊戲之同儕網路互動範圍語音交談★ 基於范諾圖之同儕式網路虛擬環境狀態管理
★ 利用多變量分析 之多人線上遊戲信任使用者選擇★ 無位置資訊無線感測網路之覆蓋及連通維持
★ 同儕網路虛擬環境3D串流同儕選擇策略★ 一個使用802.11與RFID技術的無所不在導覽系統U-Guide之設計與實作
★ 同儕式三維資料串流★ IM Finder: 透過即時通訊網路線上使用者找尋解答
★ 無位置資訊無線感測網路自走車有向天線導航與協調演算法★ 多匯點無線感測網路省能及流量分散事件輪廓追蹤
★ 頻寬感知同儕式3D串流★ 無線感測網路旋轉指向天線定位法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 新進來的學生需要導航系統帶領他們探索新的環境與建築。隨著行動科技日益進步,一個利用行動運算建置的導航系統(如手機或是平板電腦),就可以輕鬆的幫助新學生進行所需要的定位。近代以來,由於Cyber-Physical System (CPS)讓我們可以將網路環境和現實環境進行連結,因此變得相當受歡迎。而目前的研究皆關注於使用Pedestrian Dead Reckoning (PDR) [KAN15]、PDR with Google Map [CZO15]和PDR with Augmented reality (AR) [LOW15]的導航系統。但這些研究在監控大樓內多個使用者的位置時,皆沒有將現實和網路環境進行連結。
此論文提出了一種基於Marker-Based Cyber-Physical 的AR導航系統。同時,此論文另外開發了一個Android應用程式名為Engfi Gate system,用來評估前述系統的優劣。論文中的AR系統由Marker-Based Cyber-Physical Interaction、室內定位和AR子系統組成。當「Marker-Based Cyber-Physical Interaction」和室內定位及AR子系統做組合時,它給予了導航系統全新的體驗。另外,在Engfi Gate system中,提供了兩個AR操作模式给新學生做選擇。
為了評估 Engfi Gate system,我们將該系統與其他現有的研究系統進行比較,我們比較了測量室内定位的精準度和評估兩種AR操作模式的。結果證明了此論文中的系统不僅展現了其為一個良好的系統,同時也有包含許多的功能和良好的操作模式。除此之外,這種建構系統在未來的發展上,可以用於其他的空間應用程式中做使用。
摘要(英) Freshmen need a guidance system to explore their new building environment. With the advancements of mobile technologies, a guidance system using mobile computing devices such as mobile phones or tablets could aid freshmen in locating the desired destination with ease. Recently, the Cyber-Physical System (CPS) becomes popular because it enables us to connect our physical environment with the cyber environment. Current research designed guidance system by using Pedestrian Dead Reckoning (PDR) [KAN15], PDR with Google Map [CZO15], and PDR with Augmented reality (AR) [LOW15]. The research did not connect the physical and the cyber environments to monitor multiple user locations in the building.
This research proposes the design of a Marker-Based Cyber-Physical AR guidance system. An Android application, named Engfi Gate system developed to realize the design. This system consists of the Marker-Based Cyber-Physical Interaction, Indoor Positioning and, AR subsystems. Marker-Based Cyber-Physical Interaction gives a new experience in the guidance system when it combines with the Indoor Positioning and AR subsystems. Engfi Gate system has two AR operation modes as options.
To evaluate the Engfi Gate system, we compare it with other related systems, measure indoor positioning accuracy, and evaluate the two types AR operation modes. The comparison results show that the Engfi Gate system has not only good performances but also more features and operational preferences. Furthermore, the design architecture of Engfi Gate system can be used in other location-based applications.
關鍵字(中) ★ Cyber Physical System
★ Marker
★ Augmented-Reality
★ Guidance System
★ Positioning
關鍵字(英) ★ Cyber Physical System
★ Marker
★ Augmented-Reality
★ Guidance System
★ Positioning
論文目次 中文摘要 i
ABSTRACT ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 RELATED WORK 4
2.1 Pedestrian Guidance for Public Transport Users in Indoor Stations Using Smartphones 4
2.2 Interactive Virtual Indoor Navigation System using Visual Recognition and Pedestrian Dead Reckoning Techniques 5
2.3 SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization 7
CHAPTER 3 PROPOSED SYSTEM 9
3.1 Hardware and software requirements 9
3.1.1 Hardware Requirements 9
3.1.2 Software Requirements 11
3.2 System Architecture 13
3.3 Application Screen Flow 14
3.4 Features List 16
3.4.1 Guidance System 16
3.4.2 Room Map Information 16
3.4.3 Indoor Navigations 16
3.4.4 Cyber Physical Enabled 16
3.5 Operation Modes 17
3.5.1 Phone Display 17
3.5.2 Head Mounted Display 17
CHAPTER 4 IMPLEMENTATION AND EVALUATION 18
4.1 Marker-Based Cyber-Physical Interaction 18
4.1.1 Pi Beacon with Sensor Devices as Invisible Marker 18
4.1.2 Cyber and Physical System Communication 20
4.2 Indoor Positioning 21
4.2.1 QR Code Indoor Positioning 21
4.2.2 Bluetooth Beacon Weight-Compensated Weighted Centroid Localization Based 22
4.3 Augmented Reality System 25
4.1.1 Augmented Reality Implementation 25
4.1.2 Path Suggestion and Time Travel Calculation 28
4.4 System Comparison 29
CHAPTER 5 CONCLUSION AND FUTURE WORK 31
5.1 Conclusion 31
5.2 Future Work 32
REFERENCES 33
參考文獻 REFERENCES
[*BLU] Bluetooth Beacons. http://bluetoothbeacons.com/, last accessed on June 2016.
[*RASP] Raspberry Pi. https://en.wikipedia.org/wiki/Raspberry_Pi, last accessed on June 2016.
[*GCAR] Google Cardboard. https://en.wikipedia.org/wiki/Google_Cardboard, last accessed on June 2016.
[*AND] Android Studio. https://developer.android.com/studio/intro/index.html, last accessed on June 2016.
[*VUF] Vuforia SDK. https://developer.vuforia.com/, last accessed on June 2016.
[*GVR] Google VR SDK. https://developers.google.com/vr/concepts/overview-cardboard, last accessed on June 2016.
[*UNITY] Unity 3D software. https://unity3d.com/unity/, last accessed on June 2016.
[KEV11] Kevin Curran, Eoghan Furey, Tom Lunney, Jose Santos, Derek Woods and Aiden Mc Caughey (2011) “An Evaluation of Indoor Location Determination Technologies”. Journal of Location Based Services Vol. 5, No. 2, pp: 61-78, June 2011, ISSN 1748-9725
[DON14] Dong Quande and Xu Xu, "A Novel Weighted Centroid Localization Algorithm Based on RSSI for an Outdoor Environment," in College of Information Engineering, Suzhou University, Journal of Communications Vol. 9, No. 3, March 2014.
[TAN14] L. A. Tang, J. Han and G. Jiang, "Mining sensor data in cyber-physical systems," in Tsinghua Science and Technology, vol. 19, no. 3, pp. 225-234, June 2014.
[PAE14] V. Paelke, "Augmented reality in the smart factory: Supporting workers in an industry 4.0. environment," Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, 2014, pp. 1-4.
[CZO15] O. Czogalla and S. Naumann, "Pedestrian Guidance for Public Transport Users in Indoor Stations Using Smartphones," 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Las Palmas, 2015, pp. 2539-2544.
[ZHA15] X. Zhang, Y. Chen and T. Li, "Optimization of logistics route based on Dijkstra," Software Engineering and Service Science (ICSESS), 2015 6th IEEE International Conference on, Beijing, 2015, pp. 313-316.
[AHM15] A. A. Ahmed, M. Al-Shaboti and A. Al-Zubairi, "An Indoor Emergency Guidance Algorithm Based on Wireless Sensor Networks," Cloud Computing (ICCC), 2015 International Conference on, Riyadh, 2015, pp. 1-5.
[LOW15] Low Chin Gee and Lee Yunli, "Interactive Virtual Indoor Navigation System using Visual Recognition and Pedestrian Dead Reckoning Techniques" Proceedings International Journal of Software Engineering and Its Applications, Sunway University-Malaysia, 2015.
[FUJ15] A. Fujihara and T. Yanagizawa, "Proposing an Extended iBeacon System for Indoor Route Guidance," Intelligent Networking and Collaborative Systems (INCOS), 2015 International Conference on, Taipei, 2015, pp. 31-37.
[KAN15] W. Kang and Y. Han, "SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization," in IEEE Sensors Journal, vol. 15, no. 5, pp. 2906-2916, May 2015.
指導教授 江振瑞、Muhammad Aswin、Herman Tolle(Jehn-Ruey Jiang Muhammad Aswin Herman Tolle) 審核日期 2016-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明