博碩士論文 102521119 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:3.143.17.127
姓名 蘇倢倫(Jie-Lun Su)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 單顆量子點熱引擎之效率分析
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 量子點的電子能階★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性
★ 自對準矽奈米線金氧半場效電晶體之研製★ 鍺浮點記憶體之研製
★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析★ 應用於數位電視頻帶之平衡不平衡轉換器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討在線性區間,單顆量子點連接金屬電極再接外部負載時系統轉換效率。利用格林函數求得電流與熱流,並推算出電導、熱導、席貝克係數與熱電優值( ZT ),最後得到轉換效率。在改變冷端溫度時系統轉換效率下降,而改變兩端溫差則使效率上升。同時,發現熱電優值越大,則轉換效率則以兩端溫差決定,類似卡諾引擎。除此之外,聲子熱導會明顯的抑制效率大小,因此降低聲子熱導是非常重要的議題。最後,我們討論外部電導對轉換效率的影響。我們發現當系統本身電導與外部電導的比值越靠近√(1+ZT),則系統轉換效率為最大。
摘要(英) In linear response regime, we study the efficiency of a single quantum dot (QD) embedded into a matrix connected to two metallic electrodes with a temperature difference. The electrical conductance, thermal conductance, Seebeck coefficient, figure of merit (ZT) and the efficiency (η) of QD junction system are calculated from electron and heat currents which are derived by the Green’s function technique. η is enhanced by increasing a temperature bias at a fixed cold-side temperature, but it is suppressed by increasing a cold-side temperature at a fixed temperature bias. Meanwhile, the behavior of system is similar to a Carnot engine when ZT is infinite. Finally, we have investigated how the η is influenced by the external conductance. The maximum value of η occurs when the ratio between the electrical conductance and external conductance equals to √(1+ZT).
關鍵字(中) ★ 量子點
★ 熱電元件
★ 熱引擎
★ 轉換效率
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 導論 1
1-1 前言 1
1-2 熱電效應 1
1-3 熱電元件發展 4
1-4 研究動機 6
第二章 單顆量子點熱電系統模型 7
2-1 前言 7
2-2 系統模型建立 8
2-3穿隧電流、熱流與電子傳輸函數 10
2-3-1穿隧電流與熱流 10
2-3-2單一能階系統推遲格林函數 11
2-4熱電優值之各項參數與系統效率 12
2-4-1熱電優值之各項參數 12
2-4-2熱電系統參數 16
第三章單量子點熱電轉換效率模擬 20
3-1前言 20
3-2改變溫度對轉換效率影響 22
3-2-1改變冷端溫度對轉換效率影響 22
3-2-2改變溫度差對轉換效率影響 24
3-2-3改變溫度對熱電優質與效率影響 26
3-3改變聲子熱導對系統轉換效率影響 29
3-4改變外部電導對於系統轉換效率影響 31
第四章結論 34
參考文獻 35
參考文獻 [1] D.M. Rowe, Ph.D., D.Sc., “Thermoelectric Handbook ( Macro To Nano )”, CRC, New York (2006).
[2] A.F. Ioffe, “Semiconductor thermoelements and Thermoelectric cooling”, Infosearch Limited, London (1957).
[3] H.J. Goldsmid, b. Sc. and R.W. Douglas, “The use of semiconductors in thermoelectric refrigeration”, Br. J. Appl. Phys. 5, 368 (1954).
[4] H. J. Goldsmid, A. R. Sheard, and D. A. Wright, “The performance of bismuth telluride thermojunctions”, Br. J. Appl. Phys. 9, 365 (1958).
[5] Arun Majumdar, “Thermoelectricity in Semiconductor Nanostructures” Science 303, 777-778 (2004).
[6] Snyder, G. Jeffrey, and Eric S. Toberer. "Complex thermoelectric materials" Nature materials 7, 105 – 114 (2008).
[7] L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B 47, 12727 (1993).
[8] L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B 47, 16631 (1993).
[9] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, “Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit”, Phys. Rev. B 53, R10493 (1996).
[10] T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices”, Science 297, 2229-2232 (2002).
[11] R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O′Quinn “Thin-film thermoelectric devices with high room-temperature figures of merit”, Nature 413, 597-602 (2001).
[12] Yu-Ming Lin and M. S. Dresselhaus, “Thermoelectric properties of superlattice nanowires”, Phys. Rev. B 68, 075304 (2003).
[13] T. E. Humphrey and H. Linke, “Reversible Thermoelectric Nanomaterials”, Phys. Rev. Lett. 94, 096601 (2005).
[14] J. Cai and G. D. Mahan, “Transport properties of quantum dot arrays”, Phys. Rev. B 78, 035115 (2008).
[15] P. M. Wu, J. Gooth, X. Zianni, S. F. Svensson, J. G. Gluschke, et al. “Large Thermoelectric Power Factor Enhancement Observed in InAs Nanowires”, Nano Letters 13, 4080–4086, 2013.
[16] H. Nakamura, T. Ohto, T. Ishida and Y. Asai, “Thermoelectric Efficiency of Organometallic Complex Wires via Quantum Resonance Effect and Long-Range Electric Transport Property”, J. Am. Chem. Soc., 513 , 16545–16552 (2013).
[17] D. M. -T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions”, Phys. Rev. B 81, 205321 (2010).
[18] David M.-T. Kuo, "Thermoelectric Effects of Molecular Quantum Dot Junctions with Strong Electron Phonon Interactions", Jpn. J. Appl. Phys. 49, 095205 (2010).
[19] M. Tsaousidou and G. P. Triberis “Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency”, J. Phys.: Condens. Matter 22, 355304 (2010).
[20] R. Yang and G. Chen, “Thermal conductivity modeling of periodic two-dimensional nanocomposites”, Phys. Rev. B 69, 195316 (2004).
[21] T. Markussen, A.-P. Jauho, and M. Brandbyge, “Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics”, Phys. Rev. Lett. 103, 055502 (2009).
[22] Y. Meir, N.S. Wingreen and P.A. Lee, “Low-temperature transport through a quantum dot: The Anderson model out of equilibrium”, Phys. Rev. Lett. 70, 2601 (1993).
[23] D. M.T. Kuo, “Effect of interlevel coulomb interaction on the tunneling current through a single quantum dot”, Physica E 27, 355-361 (2005).
[24] D. M. T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure junction involving multiple energy”, Phys. Rev. Lett. 99, 086803 (2007).
[25] D. M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B, 61, 11051 (2000).
[26] David M. T. Kuo, “Effect of interlevel Coulomb interactions on the tunneling current through a single quantum dot”, Physica E, 27, 355 (2005).
[27] K. Schwab, E. A. Henriksen, J. M. Worlock and M. L. Roukes, “Measurement of the quantum of thermal conductance”, Nature 404, 974-977 (2000).
[28]曾彥鈞,“低維度系統之熱電特性”,博士論文,國立中央大學,民國103年。
[29] Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath. “Silicon nanowires as efficient thermoelectricmaterials” ,Nature 451, 168 (2004).
指導教授 郭明庭、李佩雯 審核日期 2016-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明