博碩士論文 985401601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:162 、訪客IP:18.191.228.88
姓名 陳氏草(Tran Thi Thao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 形態優先之區域層集法於影像提取應用
(Region-based Level Set Method with Shape Prior and Applications to Image Segmentation)
相關論文
★ 感光式觸控面板設計★ 單級式直流無刷馬達系統之研製
★ 單級高功因LLC諧振電源轉換器之研製★ 多頻相位編碼於穩態視覺誘發電位之大腦人機介面系統設計
★ 類神經網路於切換式磁阻馬達轉矩漣波控制之應用★ 感應馬達無速度感測之直接轉矩向量控制
★ 具自我調適導通角度功能之切換式磁阻馬達驅動系統---DSP實現★ 感應馬達之低轉速直接轉矩控制策略
★ 加強型數位濾波器設計於主動式噪音控制之應用★ 非匹配不確定可變結構系統之分析與設計
★ 無刷直流馬達直接轉矩控制方法之轉矩漣波改善★ 無轉軸偵測元件之無刷直流馬達驅動器研製
★ 無轉軸偵測元件之開關磁阻馬達驅動系統研製★ 感應馬達之新型直接轉矩控制研究
★ 同步磁阻馬達之性能分析及運動控制研究★ 改良比例積分與模糊控制器於線性壓電陶瓷馬達位置控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 影像分割是將影像根據其視覺或物理意義切割成前景和背景,在影像處理和電腦視覺的領域皆扮演重要角色。目前常見的方法有:直方圖閥值法、區域生長分割法、群集法、顯式動態邊緣模型及層集法。其中,層集法(隱式動態邊緣模型)已被證實為一大有可為的方法,屬於變分法的一種,分割的求解過程,是將切割曲線與欲切割的圖像相關的能量泛函最小化。雖然在影像分割及邊緣為基礎的物體追蹤上是個可靠的工具,層集法普遍受限於一些限制,像是對初始曲線敏感,和大量的計算時間。此外,目前通用的模型較難處理複雜背景或遮蔽效應。
本研究旨在建立層集法以處理影像分割中的挑戰──包括遮蔽效應和複雜背景,以及計算效能。在第一個模型中,我們將欲分割物體的形態優先知識加入能量泛函,使能量泛函包含資料項和形態項。資料項,取材自區域法,自影像強度資訊中演化出輪廓。形態優先項,定義為演化輪廓和參考輪廓的距離,依據參考輪廓來限制目標輪廓的演化。為了處理形態變異,我們以主成份分析法來建立參考形狀,並將形態項轉譯為模糊能量生成函數。在模型中,為了對齊參考形狀、演化形狀和訓練資料中的形狀,我們應用不變矩方法和形狀正規化程序直接計算形變程度,而非利用常見的梯度下降法。此外,為了最小化能量泛函,我們直接計算能量的轉變,此方法因而能有效率的處理具複雜背景和遮蔽效應的影像,同時增進計算速度,並且避免梯度下降法需處理的時間步長選擇問題。
第二個模型仍舊處理具複雜背景和物件遮蔽。我們導入核心密度預測法,用來估計訓練資料中的形態特徵以建立優先形態。配合不變矩方法和形狀正規化以對齊形態,為了能較快速的收斂,我們將層集方程式表示成以B-spline為基底的連續函數的線性組合。此外,我們也延伸模型至應用至多相位層集法的問題上,並將此延伸版本應用於追縱心臟MR影像的左心室位置。相較於常見的形態優先之主動輪廓模型,此模型表現出幾項優勢,例如,避免解偏微分方程會遇到的缺點。更有甚者,我們提出的模型減少了計算時間並快迅地收斂至分割解。
簡言之,此論文提出了兩個形態優先為基礎的層級法,有效率地解決影像分割中的複雜背景和遮蔽效應。此模型可應用於批次處理影像分割的工作。實驗結果顯示,我們提出的模型與其他現存方法之成效可並駕齊驅。
摘要(英) Image segmentation plays an important role in the field of image processing and computer vision. The goal of image segmentation is to partition an image into semantic parts including foreground and background. There have been many methods for image segmentation such as histogram thresholding, region-growing, clustering, explicit active contours, and level set methods. Among them, level set methods (or implicit active contours) are shown to be a promising approach to perform the segmentation tasks. Level set methods belong to variational methods in which the segmentation solution is derived by minimizing an energy functional associated with the curve itself and features of image to segment. Although being a promising approach for image segmentation and contour-based object tracking, level set methods generally suffer from some drawbacks such as initial curve sensitivity and high computational cost. In addition, common models meet difficulties when dealing with images in the presence of clutter and occlusion.
This dissertation aims at developing level set models to handle challenges in segmentation of objects under occlusion and cluttered background as well as computational cost.Particularly, in the first model, to deal withimages in the presence of clutter and occlusion, we encoded the shape prior knowledge of desired object into energy functional which includes a data term and a shape term. The data term, inspired from the region-based approach, evolves the contour relied on the image intensity information. The shape prior term, defined as the distance between the evolving shape and a reference one, constrains the evolution of the contour with respect to the reference shape. To handle shape variability, we build the reference shape through Principal Component Analysis approach, and encode the shape term into a fuzzy energy formulation. Especially, in this model, to align the reference shape and the evolving one as well as the shapes in the training data, we employ moment invariant approach and shape normalization procedure that directly calculates the shape transformation, instead of using common gradient descent approach. In addition, to minimize the energy functional, we utilize a direct method to calculate the alteration of the energy.The proposed model therefore can deal with images with cluttered background and object occlusion in an effective way. Moreover, it also improves the computational speed, and avoids difficulties associated with time step selection issue in gradient descent based approaches.
In the second model, also for segmenting imageswith cluttered background and occluded objects, we employ kernel density estimation to estimate shapes’ features in the set of training shapes to construct the shape prior. Along with utilizing the moment invariant approach and shape normalization procedure to align the shapes, for a fast convergence, we represent the level set functions as linear combinations of continuous basic function expressed on B-spline basics. Moreover, we also extend the model into multiphase formulation case and apply the extended version to segment and track the left ventricle from cardiac MR images. The model therefore reveals some advantages, such as avoiding shortcomings associated with solving a set of partial differential equations as in the conventional shape prior-based models. Moreover, the proposed model reduces computation time and fast converges to segmentation solutions.
In sum, this dissertation presents two supervised level set models to perform image segmentation tasks. In the first model, the shape prior knowledge of the desired objects is encoded into energy functional via performing principal component analysis on shapes in the given training data. The alignment between the shapes is achieved by utilizing moment invariant approach and shape normalization procedure. The segmentation solution is derived by directly calculating the changes in value of energy functional. In the second model, the shape prior term is constructed by employing kernel density estimation on the given training shapes. The level set functions are represented by a linear combination of continuous functions expressed on B-spline basic function. The proposed models are applied to segment a vast number of images and experimental results show the desired performances of our proposed models.
關鍵字(中) ★ 主動輪廓
★ 影像切割
★ 層集法
★ 模糊能量
★ 為基礎的層級法
關鍵字(英) ★ Active Contours
★ Image Segmentation
★ Level set methods
★ Fuzzy Energy
★ Supervised level set models
論文目次 摘要............................................................................................................................................i
ABSTRACT.............................................................................................................................iii
ACKNOWLEDGEMENTS.....................................................................................................vi
TABLE OF CONTENTS........................................................................................................vii
LIST OF FIGURES...................................................................................................................x
LIST OF TABLES..................................................................................................................xv
NOMENCLATURE...............................................................................................................xvi
Chapter I Introduction............................................................................................................1
1.1 Motivation...............................................................................................................1
1.2 Objectives................................................................................................................4
1.3 Dissertation Structure............................................................................................. 5
Chapter II Background...........................................................................................................7
2.1 Explicit Active Contour Models/Snakes.................................................................7
2.2 Implicit Active Contour Model ..............................................................................9
2.2.1 Edge-based Level Set Models................................................................11
2.2.2 Region-based Level Set Models.............................................................14
2.3 State of the Art Region based Models...................................................................17
2.3.1 Fuzzy Energy-based Active Contour Model..........................................17
2.3.2 Variational B-Spline Level Set Model...................................................18
2.4 Moment-based Shape Description and Shape Normalization Procedure ............19
2.4.1 Moment-based Shape Description..........................................................20
2.4.2 Shape Normalization Procedure.............................................................20
2.5 Summary................................................................................................................24
Chapter III Fuzzy Energy-based Active Contour with Shape Prior for Image
Segmentation.....................................................................................................25
3.1 Motivation.............................................................................................................25
3.2 Fuzzy Energy-based Active Contour Model with Shape Prior.............................31
3.2.1 Shape Distance Measure.........................................................................31
3.2.2 Shape Alignment....................................................................................32
3.2.3 Shape Variation Handling......................................................................33
3.2.4 Fuzzy Energy Functional and Minimization..........................................35
3.2.5 Numerical Approximation......................................................................36
3.3 Experimental Results and Method Comparison................................................... 38
3.3.1. The Case of Single Prior Shape.............................................................39
3.3.2. The Case of a Set of Training Shapes....................................................44
3.4 Summary................................................................................................................55
Chapter IV Shape Prior-based Models with Variational B-Spline Level Set..................56
4.1 Motivation.............................................................................................................57
4.2 Active Contour Model with a Shape Prior............................................................61
4.2.1 The Shape Term......................................................................................62
4.2.2 The Data Term........................................................................................62
4.2.3 Energy Functional Minimization............................................................63
4.3 Prior Shape from a Set of Training Samples…………………………….............65
4.4 Experimental Results and Method Comparison………...……………...………..68
4.4.1 Experimental Results..............................................................................68
4.4.2 Method Comparison...............................................................................75
4.5Extension to Multiphase Level Set Formulation for Endocardium and Epicardium
Sgmentation..........................................................................................................81
4.5.1 Energy Functional.................................................................................82
4.5.2. Prior Shape Template Reconstruction..................................................84
4.5.2.1. Incremental Principal Component Analysis...........................85
4.5.2.2 Prior Shape Reconstruction....................................................87
4.5.3. Energy Functional and Minimization...................................................88
4.5.4. Experimental Results............................................................................92
4.6 Summary..............................................................................................................102
Chapter V Concluding Remarks and Future Works.......................................................104
5.1 Conclusion...........................................................................................................104
5.2 Future Works.......................................................................................................106
Bibliographies......................................................................................................................107Publications during Ph.D. studies......................................................................................114
參考文獻 1. A. Andreopoulos and Tsotsos, J.K., "Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI," Medical Image Analysis, vol. 12, no. 3, pp. 335-357, 2008.
2. K.K. Shyu, V.T. Pham, T.T. Tran, and P.L. Lee, "Unsupervised active contours driven by density distance and local fitting energy with applications to medical image segmentation," Machine Vision and Applications, vol. 23, no. 6, pp. 1159-1175, 2012.
3. L. He, Peng, Z., Everding, B., Wang, X., Han, C., Weiss, K., and Wee, W. G., "A comparative study of deformable contour methods on medical image segmentation," Image Vision Comput., vol. 26, no. 2, pp. 141-163, 2008.
4. D. Cremers, M. Rousson, and R. Deriche, "A review of statistical approaches to level set segmentation: Integrating color, texture, motion and shape," International Journal of Computer Vision, vol. 72, no. 2, pp. 195-215, 2007.
5. M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models," International Journal of Computer Vision, vol. 1, no. 4, pp. 321-331, 1988.
6. V.T. Pham, T.T. Tran, Y.J. Chiu, and K.K. Shyu, "Region-aided Geodesic Active Contour Model for Image Segmentation," in: Proc. of the 3rd IEEE International Conference on Computer Science and Information Technology, 2010. pp. 318-321.
7. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2002.
8. T.T Tran, V.T. Pham, and K.K. Shyu, "Zernike Moment and Local Distribution Fuzzy Energy based Active Contours for Image Segmentation," Signal, Image and Video Processing, vol. 8, no. 1, pp. 11-25, 2012.
9. R. Ronfard, "Region-based strategies for active contour models," International Journal of Computer Vision, vol. 13, no. 2, pp. 229-251, 1994.
10. T. Chan and L. Vese, "Active contours without edges," IEEE Trans. Image Processing, vol. 10, no. 2, pp. 266-277, 2001.
11. V. Caselles, F. Catte, T. Coll, and F. Dibos, "A geometric model for active contours in image processing," Numerische Mathematik, vol. 66, no. 1, pp. 1-31, 1993.
12. V. Caselles, R. Kimmel, and G. Sapiro, "Geodesic active contours," International Journal of Computer Vision, vol. 22, no. 1, pp. 61-79, 1997.
13. D. Mumford and J. Shah, "Optimal approximations by piecewise smooth functions and associated variational problems," Communication on Pure and Applied Mathematics vol. 42, no. 5, pp. 577-685, 1989.
14. I.B. Ayed, S. Li, and I. Ross, "Level set image segmentation with a statistical overlap constraint.," in: Proc. of Information Processing in Medical Imaging (IPMI), 2009. pp. 589-601.
15. K. Ni, X. Bresson, T. Chan, and S. Esedoglu, "Local histogram based segmentation using the Wasserstein distance," International Journal of Computer Vision, vol. 84, no. 1, pp. 97-111, 2009.
16. S. Krinidis and V. Chatzis, "Fuzzy energy-based active contour," IEEE Trans. Image Processing, vol. 18, no. 12, pp. 2747-2755, 2009.
17. K.K. Shyu, T.T. Tran, V.T. Pham, P.L. Lee, and L.J. Shang, "Fuzzy distribution fitting energy-based active contours for image segmentation," Nonlinear Dynamics, vol. 69, no. 1-2, pp. 295-312, 2012.
18. O. Bernard, Friboulet, D., Thevenaz, P., and Unser, M., "Variational B-Spline Level-Set: A Linear Filtering Approach for Fast Deformable Model Evolution," IEEE Trans. Image Processing, vol. 18, no. 6, pp. 1179-1191, 2009.
19. C. Li, C. Kao, C. Gui, and M.D. Fox, "Level set evolution without re-inittialization," in: Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005. pp. 430-436.
20. B. Song and T. Chan, A Fast Algorithm for Level Set Based Optimization, in UCLA CAM Report 02-68. 2002.
21. K.K. Shyu, V.T. Pham, T.T. Tran, and P.L. Lee, "Global and local fuzzy energy based-active contours for image segmentation," Nonlinear Dynamics, vol. 67, no. 2, pp. 1559-1578, 2012.
22. Y. Chen, Tagare, H.D., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K.S., Briggs, R.W., Geiser, E.A., and . "Using prior shapes in geometric active contours in a variational framework," International Journal of Computer Vision, vol. 50, no. 3, pp. 315-328, 2002.
23. M. Rousson and Paragios, N., "Shape priors for level set representations," in: Proc. of European Conference in Computer Vision (ECCV), Copenhagen, Denmark, 2002. pp. 78–92.
24. T. Chan and Zhu, W., "Level set based shape prior segmentation," in: Proc. of Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 2005. pp. 1164-1170.
25. T.T Tran, Pham, V.T., and Shyu, K.K., "Image Segmentation using Fuzzy Energy-based Active Contour with Shape Prior," J. Visual Commun. Image Represent. , vol. 25, no. 7, pp. 1732–1745, 2014.
26. D. Cremers, Kohlberger, T., and Schnorr, C., "Shape statistics in kernel space for variational image segmentation," Pattern Recognition, vol. 36, no. 9, pp. 1929-1943, 2003.
27. D. Cremers, Osher, S.J., and Schnorr, C., "Kernel density estimation and intrinsic alignment for shape priors in level set segmentation," International Journal of Computer Vision, vol. 69, no. 3, pp. 335-351, 2006.
28. T.T Tran, V.T. Pham, and K.K. Shyu, "Moment-based Alignment for Shape Prior with Variational B-Spline Level Set," Machine Vision and Applications, vol. 24, no. 5, pp. 1075-1091, 2013.
29. J.G. Leu, "Shape normalization through compacting," Patten Recognition Letters, vol. 10, no. 4, pp. 243-250, 1989.
30. S. Pei and Lin, C., "Normalization of Rotationally Symmetric Shapes for Pattern Recognition," Pattern Recognition, vol. 25, no. 9, pp. 913-920, 1992.
31. A. Blake and M. Isard, Active Contours, Springer, Cambridge, 1998.
32. S. Osher and J.A. Sethian, "Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulation," Journal of Computational Physics, vol. 79, no., pp. 12-49, 1988.
33. J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University Press, Cambridge, 1999.
34. S. Osher and N. Paragios, "Level Set Methods", in Geometric Level Set Methods in Imaging, Vision and Graphics, Springer-Verlag NY, 2003.
35. C. Li, C. Kao, J.C. Gore, and Z. Ding, "Minimization of region-scalable fitting energy for image segmentation," IEEE Trans. Image Processing, vol. 17, no. 10, pp. 1940-1949, 2008.
36. T.T. Tran, V.T. Pham, Y.J. Chiu, and K.K. Shyu, "Image Segmentation based on Geodesic aided Chan-Vese Model," in: Proc. of the 3rd IEEE International Conference on Computer Science and Information Technology, 2010. pp. 315-317.
37. T.T. Tran, V.T. Pham, Y.J. Chiu, and K.K. Shyu, "Active Contour with Selective Local or Global Segmentation for Intensity Inhomogeneous Image," in: Proc. of the 3rd IEEE International Conference on Computer Science and Information Technology, 2010. pp. 306-310.
38. R. Malladi and J. Sethian, "Image processing via level set curvature flow," in: Proc. of National Academy of Science, 1995. pp. 7046–7050.
39. R. Malladi, J. Sethian, and C. Vemuri, "Shape modeling with front propagation: a level set approach," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158-175, 1995.
40. A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannenbaum, "A geometric snake model for segmentation of medical imagery," IEEE Trans. Medical Imaging, vol. 16, no. 2, pp. 199-209, 1997.
41. L.D. Cohen, "On Active Contour Models and Balloons," Computer Vision Graphics Image Processing, vol. 53, no. 2, pp. 211-218, 1991.
42. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, "Gradient flows and geometric active contour models," in: Proc. of IEEE International Conference on Computer Vision, 1995. pp. 810-815.
43. G. Sapiro, "Color snakes," Computer Vision and Image Understanding, vol. 68, no. 2, pp. 247-253, 1997.
44. A. Tsai, A. Yezzi, and A.S. Willsky, "Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification," IEEE Trans. Image Processing, vol. 10, no. 8, pp. 1169-1186, 2001.
45. L. Vese and T. Chan, "A multiphase level set framework for image segmentation using the Mumford and Shah model," International Journal of Computer Vision, vol. 50, no. 3, pp. 271-293, 2002.
46. L. He, S. Zheng, and L. Wang, "Integrating local distribution information with level set for boundary extraction," Journal of Visual Communication and Image Representation vol. 21, no. 4, pp. 343-354, 2010.
47. M. Unser, "Splines: A perfect fit for signal and image processing," IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22-38, 1999.
48. J Kybic and Unser, M, "Fast parametric elastic image registration," IEEE Trans. Image Processing, vol. 12, no. 11, pp. 1427-1442, 2003.
49. M.K. Hu, "Visual pattern recognition by moments invariants," IRE Trans. Information Theory, vol. 8, no. 1, pp. 179-187, 1962.
50. S. Pei and Lin, C., "Image normalization for pattern recognition," Image and Vision computing, vol. 13, no. 10, pp. 711-723, 1995.
51. X.H. Wang and Zhao, R.C., "A new method for image normalization," in: Proc. of international symposium on intelligent multimedia, video, and speech processing, Hong Kong, 2001. pp. 356-359.
52. M.R. Teague, "Image analysis via the general theory of moments," J. Opt. Soc. Am. , vol. 70, no. 8, pp. 920-930, 1980.
53. X. Xie and Mirmehdi, M., "MAC: Magnetostatic Active Contour Model," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 4, pp. 632-646, 2008.
54. S. Lankton and A. Tannenbaum, "Localizing region-based active contour," IEEE Trans. Image Processing, vol. 17, no. 11, pp. 2029-2039, 2008.
55. A. Yezzi, A. Tsai, and A. Willsky, "A fully global approach to image segmentation via coupled curve evolution equations," Journal of Visual Communication and Image Representation, vol. 13, no. 1, pp. 195-216, 2002.
56. O. Michailovich, Y. Rathi, and A. Tannenbaum, "Image segmentation using active-contours driven by the Bhattacharyya gradient flow," IEEE Trans. Image Processing, vol. 16, no. 11, pp. 2787-2801, 2007.
57. M. Rousson and R. Deriche, "A variational framework for active and adaptive segmentation of vector valued images," in: Proc. of IEEE Workshop on Motion and Video Computing, 2002. pp.
58. J. Gomes and Faugeras, O., "Reconciling distance functions and level sets," Journal of Visual Communication and Image Representation, vol. 11, no. 2, pp. 209-223, 2000.
59. N. Xu, R. Bansal, and N. Ahuja, "Object segmentation using graph cuts based active contours," in: Proc. of IEEE International Conference Computer Vision and Pattern Recognition(CVPR), Madison, Wisconsin, USA, 2003. pp. 46-53.
60. N. Xu, N. Ahuja, and R. Bansal, "Object segmentation using graph cuts based active contours.," Computer Vision Image Understanding, vol. 107, no. 3, pp. 210-224, 2007.
61. F. Gibou and R. Fedkiw, "A fast hybrid k-means level set algorithm for segmentation," in: Proc. of 4th Annual Hawaii International Conference on Statistics and Mathematics, Honolulu, Hawaii, USA, 2005. pp. 281-291.
62. X. Bresson, Vandergheynst, P., and Thiran, J.P., "A variational model for object segmentation using boundary information and shape prior driven by the Mumford-Shah functional," International Journal of Computer Vision, vol. 28, no. 2, pp. 145-162, 2006.
63. T. Riklin-Raviv, Kiryati, N., and Sochen, N., "Prior-based Segmentation and Shape Registration in the Presence of Projective Distortion," International Journal of Computer Vision, vol. 72, no. 3, pp. 309-328, 2007.
64. M. Leventon, Grimson, E., and Faugeras, O., "Statistical shape influence in geodesic active contours," in: Proc. of Computer Vision and Pattern Recognition (CVPR), Hilton Head Island, SC , USA 2000. pp. 316-323.
65. A. Tsai, Yezzi, A., Wells, W., Temany, C., Tucker, D., Fan, A., Grimson, W.E., and Willsky, A., " A shape-based approach to the segmentation of medical imagery using level sets," IEEE Trans. Medical Imaging, vol. 22, no. 2, pp. 137-154, 2003.
66. S. Dambreville, Y. Rathi, and Tannenbaum, A., "A Framework for Image Segmentation Using Shape Models and Kernel Space Shape Priors," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 8, pp. 1385-1399, 2008.
67. N. Vu and Manjunath, B.S., "Shape prior segmentation of multiple objects with graph cuts," in: Proc. of Computer Vision and Pattern Recognition (CVPR), Anchorage, AK 2008. pp.
68. S. Dambreville, Y. Rathi, and Tannenbaum, A., "A shape-based approach to robust image segmentation," in: Proceedings of the Third international conference on Image Analysis and Recognition, 2006. pp.
69. M. Hansson, Fundana, K., S. Brandt, S., and Gudmundsson, P., "Convex spatio-temporal segmentation of the endocardium in ultrasound data using distribution and shape priors," in: Proceedings of IEEE Symposium on Biomedical Imaging, 2011. pp. 626 - 629
70. M. Morse, Liu, W., Yoo, T., and Subramanian, K., "Active Contours Using a Constraint-Based Implicit Representation," in: Proc. of Computer Vision and Pattern Recognition (CVPR), New York, 2005. pp.
71. A. Gelas, Bernard, O., Friboulet, D., and Prost, R., "Compactly supported radial basic functions based collocation method for level set evolution in image segmentation," IEEE Trans. Image Processing, vol. 16, no. 7, pp. 1873-1887, 2007.
72. H.E. Munim and Farag, A.A., "Curve/surface representation and evolution using vector level set with application to the shape-based segmentation problem," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 6, pp. 945-958, 2007.
73. N. Paragios, Rousson, M., and Ramesh, V., "Matching distance functions a shape-to area variational approach for global-to-local registration," in: Proc. of European Conference in Computer Vision (ECCV), Copenhagen, Denmark, 2002. pp. 775-789.
74. J. Yang and Duncan, J.S., "3D image segmentation of deformable objects with joint shape-intensity prior models using level sets," Medical Image Analysis, vol. 8, no. 3, pp. 285-294, 2004.
75. M. Rousson and Paragios, N., "Prior knowledge, level set representation & visual grouping," International Journal of Computer Vision, vol. 76, no. 3, pp. 231-243, 2008.
76. A. Foulonneau, Charbonnier, P., and Heitz, F., "Affine-invariant geometric shape priors for region-based active contours," IEEE Trans. Pattern Analysis and Machine Intelligence vol. 28, no. 8, pp. 1352-1357, 2006.
77. W. Liu, Shang, Y., Yang, X., Deklerck, R., and Cornelis, J., "A shape prior constraint for implicit active contours," Patten Recognition Letters, vol. 32, no. 15, pp. 1937-1947, 2011.
78. J Tohka, "Surface extraction from volumetric images using deformable meshes: a comparative study," in: Proc. of the seventh European Conference in Computer Vision (ECCV), Copenhagen, Denmark, 2002. pp. 350-364.
79. N Paragios, "A variational approach for the segmentation of the left ventricle in cardiac image analysis," Int J Comput Vis, vol. 50, no. 3, pp. 345-362, 2002.
80. T. Cootes, Taylor, C., Cooper, D., and Graham, J., "Active shape models-their training and application," Comput Vis Image Understand, vol. 61, no. 1, pp. 38-59, 1995.
81. D. Ross, Lim, J., Lin, R.-S., and Yang, M.-H., "Incremental learning for robust visual tracking," Int J Comput Vis, vol. 77, no. 1, pp. 125-141, 2008.
82. A. Levy and Lindenbaum, M., "Sequential Karhunen–Loeve basis extraction and its application to images," IEEE Trans Image Process, vol. 9, no. 8, pp. 1371–1374, 2000.
83. G. Aubert, Barlaud, M., Faugeras, O., and Jehan-Besson, S., "Image segmentation using active contours: Calculus of variations or shape gradients?," SIAM Appl Math, vol. 63, no. 6, pp. 2128-2154, 2003.
84. J.-H. Woo, Slomka, P., Kuo, J., and Hong, B.-W., "Multiphase segmentation using an implicit dual shape prior: Application to detection of left ventricle in cardiac MRI," Comput. Vis. and Image Understand., vol. 117, no. 9, pp. 1084-1094, 2013.
85. JM Bland and Altman, DG, "Statiscal methods for assessing agreement between two methods of clinical measurements," Lancet 1, vol., no., pp. 307-310, 1986.
指導教授 徐國鎧(Shyu Kuo Kai) 審核日期 2016-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明