博碩士論文 102521009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.146.105.194
姓名 陳雅雯(Ya-Wen Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於生理訊號偵測之可調式增益與頻寬讀取電路
(A Design of Read-out Circuit with Programmable Gain and Bandwidth for Bio-signal Detection)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
★ 兆元位元率之平行化可適性決策回饋等化器設計與實作★ 應用於數位視頻廣播系統中之自動增益放大器 及接受端濾波器設計
★ OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design★ 適用於億元位元率混合光纖與銅線之電信乙太接取網路技術系統之盲目等化器和時序同步電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著無線傳輸技術純熟與網際網路的普及,使得可攜帶的電子產品成為主流,近年來更搭配應用於日常生理訊號的監控與醫療照護,透過感測器偵測人體心跳、肌力等數據,再將數據傳輸至不同的系統介面,但是因為生理訊號極微小,為了能夠完整的放大訊號並應用於可攜式裝置,因此電路設計需朝向低雜訊、低功耗等目標。
本文實現一應用於生理訊號偵測的類比前端放大電路,電路架構採用AC coupling的方式,阻絕電極貼片所造成的直流偏移電壓,電路中將電晶體操作於弱反轉區以降低功耗與雜訊,且利用可調式的虛擬電阻形成低頻極點,並針對不同的生理訊號可選擇適當的增益與頻寬,避免電路發生飽和的情況。
本文採用台積電TN90GUTM CMOS 1P9M 製程實現電路,晶片面積約占0.437 mm2(包含Pad),電源供應電壓為1 V,整體電路功耗約8.96 μW(包含偏壓電路),應用頻寬為10 KHz,為了固定輸出訊號大小以利於後端電路的設計,因此當輸入訊號為不同的振幅時,可透過電路中的可調增益放大器將訊號放大至相同的振幅大小,為此當輸入訊號各別為0.3 mV、0.5 mV、1 mV 且頻率皆為250Hz時,為配合達到相同的輸出振幅大小,整體放大器增益各別須為57.6、53.2、47.3 dB,低頻截止頻率點為12.2 Hz,輸入雜訊為20.5 μVrms,雜訊效率因素(NEF)為20.98。
摘要(英) With the popularity of the wireless transmission technology and the Internet, the portable electronic products are the mainstream in the market. In recent years, the portable products with the bio-signal acquisition have been applied in daily monitoring and healthcare. Through the sensor detects the heartbeat, muscle and other data of the human, then transmit the bio-signal data to different system interfaces. In order to completely amplify the tiny bio-signal and apply in portable devices, the circuit design is required to be low noise and low power consumption.
This thesis presents a design of read-out circuit for bio-signal detection. AC coupling structure is employed to block the DC offset which is caused by the electrode. The MOS operates in weak inversion to reduce noise and power consumption. Besides, the circuit uses the pseudo resistor to achieve the low-cutoff frequency pole, and also affords programmable gain and bandwidth for different bio-signal to avoid the saturation situation.
The circuit is implemented by TSMC TN90GUTM CMOS 1P9M process and the chip area is 0.437 mm2 (including the PAD). Power consumption is about 8.96 μW for 1 V power
supply (bias circuit is included) and application bandwidth is 10 KHz. When the input signal frequency is 250Hz, the gain of the circuit can achieve 57.6、53.2、47.3 dB in three different amplitudes (0.3 mV, 0.5 mV, 1 mV). The low-cutoff frequency pole is 12.2 Hz. The input-referred noise is 20.5 μVrms (11 Hz – 10 KHz) and the NEF is 20.98.
關鍵字(中) ★ 低雜訊類比前端電路
★ 可調式增益放大器
★ 虛擬電阻
★ 弱反轉區
關鍵字(英) ★ Low-noise Bioamplifier
★ Programmable gain Bioamplifier
★ Pseudo-resistor
★ Subthreshold Region
論文目次 摘要 ............................................................................................................................................ I
Abstract ....................................................................................................................................II
致謝 ......................................................................................................................................... III
目錄 ......................................................................................................................................... IV
圖目錄
..................................................................................................................................... VI
表目錄
.................................................................................................................................. VIII
第一章緒論 ........................................................................................................................1
1.1 研究背景 .................................................................................................................... 1
1.2 研究動機 .................................................................................................................... 2
1.3 論文架構 .................................................................................................................... 3
第二章生醫訊號與需求考量
............................................................................................5
2.1 生理訊號類別 ............................................................................................................ 5
2.2 類比前端放大器之電路系統規格與需求 ................................................................ 6
2.3 非理想效應 ................................................................................................................ 8
2.3.1 熱雜訊 (Thermal noise) .................................................................................... 8
2.3.2 閃爍雜訊 (Flicker noise) ................................................................................... 9
2.3.3 環境雜訊 (Background noise) ........................................................................ 10
2.3.4 直流偏移電壓 (DC offset) .............................................................................. 10
2.4 低雜訊電路技術 ...................................................................................................... 11
2.4.1 自動歸零技術 (Auto-zero technique) ............................................................. 11
2.4.2 截波穩定技術 (Chopper stabilization technique,CHS) ................................ 12
第三章類比前端放大器架構探討
..................................................................................13
3.1 傳統儀表放大器 (Instrument amplifier,IA) ........................................................ 13
3.2 交流耦合放大器 (AC coupled amplifier) ............................................................... 14
3.3 T 型架構放大器 ....................................................................................................... 15
V
3.4 可調式增益放大器 (Programmable gain amplifier,PGA) .................................. 18
第四章可調式增益與頻寬類比前端器
..........................................................................21
4.1 電路架構 .................................................................................................................. 21
4.1.1 第一級放大器 .................................................................................................. 22
4.1.2 第二級放大器 .................................................................................................. 23
4.2 電路架構 .................................................................................................................. 24
4.2.1 運算轉導放大器 .............................................................................................. 24
4.2.2 共模回授電路 .................................................................................................. 31
4.2.3 偏壓電路 .......................................................................................................... 34
4.2.4 虛擬電阻架構 .................................................................................................. 35
第五章晶片模擬、佈局、量測與改善
..........................................................................41
5.1 規格變動 .................................................................................................................. 41
5.2 模擬與佈局 .............................................................................................................. 42
5.3 量測考量與結果 ...................................................................................................... 56
5.3.1 量測環境 .......................................................................................................... 56
5.4 晶片改善 .................................................................................................................. 58
5.4.1 漏電流雜訊 (Leakage noise) .......................................................................... 58
5.4.2 溫度變異與供應電壓變異 .............................................................................. 61
5.4.3 模擬與佈局 ...................................................................................................... 63
第六章結論與未來展望
..................................................................................................79
6.1 結論 .......................................................................................................................... 79
6.2 未來展望 .................................................................................................................. 80
參考文獻
..................................................................................................................................81
參考文獻 [1] J. G. Webster, “Medical instrumentation application and design,” Canada: John Wiley & Sons, Inc., 1998.
[2] W. Wattanapanitch, M. Fee and R. Sarpeshkar, “An energy-efficient micro-power neural recording amplifier,” IEEE Trans. On Biomed. Circuits and Syst., vol. 1, no. 2, pp. 136-147, June 2007.
[3] Sohmyung Ha, Chul Kim, Yu M. Chi,Abraham Akinin, Christoph Maier, Akinori Ueno,and Gert Cauwenberghs, “Integrated Circuits and Electrode Interfaces for Noninvasive Physiological Monitoring,” IEEE Transaction on Biomedical Engineering, Feb.30,2014, pp. 1522–1537.
[4] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–65, Jun.
2003.
[5] K. A. Ng, Yong Ping Xu, “A Compact, Low Input Capacitance Neural Recording Amplifier,” IEEE Transaction on Biomedical Circuits and Systems, vol. 7, no. 5, pp.
610-620, Oct. 2013.
[6] R. R. Harrison, “MOSFET Operation in Weak and Moderate Inversion” University of Utah. http://www.ece.utah.edu/~harrison/ece5720
[7] B. Razavi, “Design of analog CMOS integrated circuits,” New York: McGraw-Hill,2001.
[8] Fan Zhang, Jeremy Holleman, and Brian P. Otis, “Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications,” IEEE Trans. On Biomedical Circuits and Systems, vol. 6, no. 4, pp. 344–355, August, 2012.
[9] M.-T. Shiue, K.-W Yao, and C.-S.A. Gong,“ Tunable high resistance voltage-controlled pseudo-resistor with wide input voltage swing capability,” Electron. Lett., vol. 47,no. 6,pp. 377-378, Mar. 2011.
[10] K. A. Ng and P. K. Chan, “A CMOS Analog Front-End IC for Portable EEG/ECG Monitoring Applications” IEEE Transaction on Circuits and Systems I: Regular Papers,
vol. 52, no. 11, pp. 2335-2347, Nov. 2005.
[11] Wei-Ming Chen, Wen-Chia Yang, Tzung-Yun Tsai, Herming Chiueh and Chung-Yu Wu,“The Design of CMOS General-Propose Analog Front-End Circuit with Tunable Gain and Bandwidth for Biopotential Signal Recording Systems,” 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4784-4787, Aug.30-Sept.3, 2011.
[12] Richa Dubey, Anjan Kumar, and Manisha Pattanaik, “Design of Low Noise Low Power Biopotential Tunable Amplifier using Voltage Controlled Pseudo-resisitor for Biosignal Acquisition Applications,” Computing, Communication and Networking Technology,pp. 1–5, 11-13 July, 2014.
[13] Mona Elgindy, Ahmed H. Madian, “Low Voltage Digitally Programmable Gain and Bandwidth Fully Differential CMOS Neural Amplifier,” 4th IEEE RAS & EMBS
International Conference on Biomedical Robotics and Biomechatronics (BioRob),pp.477-481, 24-27 June, 2012.
[14] Ji-Yong Um, Jae-Yoon Sin, and Hong-June Park, “A Gate-leakage Insensitive 0.7-V 233-nW ECG Amplifier using Non-Feedback PMOS Pseudo-Resistors in 0.13-μm Nwell
CMOS,” Journal of Semiconductor Technology and Science, vol. 10, no. 4 pp. 309–315, Dec. 2010.
[15] M. H. Zarifi, J. Frounchi, S. Farshchi, and, J. W. Judy, “A Low-Power, Low-Noise Neural-Signal Amplifier Circuit in 90-nm CMOS,” 30th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2389-2392,20-25 Aug., 2011.
[16] Ashwath Krishnan, Shahin Farshchi, and Jack Judy, “An Integrated Power, Area and Noise Efficient AFE for Large Scale Multichannel Neural Recording Systems,” 36th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2649-2652, 26-30 Aug., 2014.
[17] Shunli Ma, Changming Chen, Yiwen Zhang, and Junyan Ren, “A Low Power Programmable Bands-Pass Filter with Novel Pseudo-Resistor for Portable Biopotential
Acquisition System,” Circuits and Systems (APCCAS), IEEE Asia Pacific Conference,pp. 232-235, 2-5 Dec., 2012.
[18] Xiaodan Zou, Xiaoyuann Xu, Libin Yao, and Yong Lian, “A 1-V 450-nW Fully Integrated Programmable Biomedical Sensor Interface Chip,” IEEE Journal of Solid-State Circuits, vol. 44, no. 4, pp. 1067-1077, April, 2009.
[19] Andrey Malkov, Dmitry Vasiounin, and Oleg Semenov, “A Review of PVT Compensation Circuits for Advanced CMOS Technologies,” Semantic Scholar Circuits and Systems, pp. 162–169, Feb. 2011.
[20] Kyung Ki Kim, and Yong-Bin Kin, “A Novel Adaptive Design Methodology for Minimum Leakage Power Considering PVT Variations on Nanoscale VLSI Systems,” IEEE Trans. On Very Large Scale Integration (VLSI) Syst. vol. 17, no. 4, pp. 517–528, Feb. 2009.
[21] M. Valenxa, A. Hoffmann, D. Sodini, A. Laigle, F. Martinez, and D. Rigaud “Overview of the impact of downscaling technology on 1/f noise in p-MOSFET to 90nm,” IEE Proceedings-Circuits, Devices and Systems, vol. 151, no. 2, pp. 102–110, April. 2004.
[22] Chon-Teng Ma, Pui-In Mak, Mang-I Vai, Peng-Un Mak, Sio-Hang Pun, Wan Feng, and R. P. Martins, “A 90nm CMOS bio-potential signal readout front-end with improved
powerline interference rejection,” IEEE International Symposium on Circuits and Systems, pp. 665–668, 24-27 May, 2009.
[23] Wei—Chih Huang, and Kea-Tiong Tang, “A 90nm CMOS low noise readout front-end for portable biopotential signal acquisition,” IEEE Biomedical Circuits and Systems
Conference (BioCAS), pp. 33–36, 28-30 Nov. 2012.
[24] Bo-Yu Shiu, Shuo-Wei Wang, Yuan-Sun Chu, and Tsung-Heng Tsai “Low-power low-noise ECG acquisition system with dsp for heart disease identification,” IEEE
Biomedical Circuits and Systems Conference (BioCAS), pp. 21–24, Oct. 31-Nov. 2, 2013.
[25] Qinwen Fan, Fabio Sebastianen, Han Huijsing, and Kofi Makinwa , “A 2.1μW area efficient capacitively-coupled chopper instrumentation amplifier for ECG applications in 65nm CMOS,” Solid-State Circuits Conference, IEEE Asian (A-SSCC), pp. 1–4, 8-10 Nov. 2010.
[26] Jiawei Xu, Refet Firat Yaziciogiu, Pieter Harpe, Kofi A. A. Makinwa, and Chris Van Hoop, “A 160μW 8-channel active electrode system for EEG monitoring,” IEEE
International Solid-State Circuits Conference, pp. 300–302, 20-24 Feb. 2011.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2016-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明