參考文獻 |
[1] Y. Tokunaga, S. Sakiyama, A. Matsumoto, and S. Dosho, “An on-chip CMOS relaxation oscillator with voltage averaging feedback”, IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1150-1158, Jun. 2010.
[2] U. Denier, “Analysis and design of an ultralow-power CMOS relaxation oscillator”, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1973-1982, Aug. 2010.
[3] http://www.aecouncil.com/AECDocuments.html
[4] Y. Lu, G. Yuan, L. Der, W.-H. Ki, and C. P. Yue, “A ±0.5 % precision on-chip frequency reference with programmable switch array for crystal-less applications” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 10, pp. 642-646, Oct. 2013.
[5] F. Sebastiano, L. J. Breems, K. Makinwa, S. Drago, D. Leenaerts, and B. Nauta, “A 65-nm CMOS temperature-compensated mobility-based frequency reference for wireless sensor networks” , IEEE J. Solid-State Circuit, vol.46, no.7, pp.1544-1552, Jul. 2011.
[6] F. Sebastiano, L. Breems, K. Makinwa, S. Drago, D. Leenaerts, and B. Nauta, “A low-voltage mobility-based frequency reference for crystal-less ULP radios,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2002-2009, July. 2009.
[7] M. S. McCorquodale, J. D. O′ Day, S. M. Pernia, G. A. Carichner, S. Kubba, and R. B. Brown, "A monolithic and self-referenced RF LC clock generator compliant with USB 2.0," IEEE J. Solid-State Circuits, vol. 42, no.2, pp. 385-399, Feb. 2007.
[8] W.-H. Sung, S.-Y. Hsu, J.-Y. Yu, C.-Y. Yu, and C.-Y. Lee, “A frequency accuracy enhanced sub-10uW on-chip clock generator for energy efficient crystal-less wireless biotelemetry applications,” in Proc. IEEE Symp. On VLSI, 2010, pp. 115-116.
[9] J.-C. Liu, W.-C. Lee, H.-Y. Huang, K.-H. Cheng, C.-J. Huang, Y.-W. Liang, J.-H. Peng, and Y.-H. Chu, “A 0.3-V all digital crystal-less clock generator for energy harvester applications,” in Proc. Asian Solid-State Circuits Conference, 2012, pp.117-120.
[10] Y.-H. Chiang, and S.-I. Liu, “A submicrowatts 1.1 MHz CMOS relaxation oscillator with temperature compensation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 12, pp. 837-841, Dec. 2013.
[11] Y.-H. Chiang, and S.-I. Liu, “Nanopower CMOS relaxation oscillator with sub-100 ppm/°C temperature coefficient,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 9, pp. 661-665, Jun. 2014.
[12] K. Sundaresan, “Process and temperature compensation in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no.2, pp. 433-442, Feb. 2006.
[13] Behzad Razavi, “Design of analog CMOS integrated circuits,” 2005.
[14] 張啟揚, “操作在0.5伏特下具溫度補償技術非石英振盪器之全數位式時脈產生器,” 碩士論文, 國立中央大學, 2013.
[15] N. Sadeghi, A. Sharif-Bakhtiar, and S. Mirabbasi, “A 0.007-mm2 108-ppm/°C 1-MHz relaxation oscillator for high-temperature application up to 108 °C in 0.13-μm CMOS,” IEEE Trans. Circuits Syst. I, Regular Papers, vol. 60, no. 7, pp. 1692-1701, Jun. 2013.
[16] J. Lee, and S.-H. Cho, “A 1.4-µW 24.9-ppm/°C current reference with process-insensitive temperature compensation in 0.18-µm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no.10, pp. 2527-2533, Jul. 2012.
[17] Y. Zhang, W. Rhee, T. Kim, and H. Park, “A 0.35-0.5-V 18-152 MHz digitally controlled relaxation oscillator with adaptive threshold calibration in 65-nm CMOS
[18] ,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 8, pp. 736-740, Jun. 2015.
[19] K.-K. Huang, and D. D. Wentzloff, “A 1.2-MHz 5.8-μW temperature compensated relaxation oscillator in 130-nm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 5, pp. 334-338, Apr. 2014.
[20] K.-J. Hsiao, “A 32.4 ppm/°C 3.2-1.6 V self-chopped relaxation oscillator with adaptive supply generation,” IEEE Symp. On VLSI, 2012, pp. 14-15.
[21] T. Tokairin, K. nose, K. Takeda, and K. Noguchi, “A 280nW, 100kHz, 1-cycle start-up time, on-chip CMOS relaxation oscillator employing a feed-forward period control scheme,” IEEE Symp. On VLSI, 2012, pp. 16-17.
[22] S. M. Kashmiri, M. A. P. Pertijs, and K. A. A. Makinwa, “A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ±0.1 % from - 55 °C to 125 °C,” IEEE J. Solid-State Circuits, vol. 45, no. 2, pp. 2510-2520, Dec. 2010.
[23] Y. Cao, P. Leroux, W. De Cock, and M. Steyaert, “A 63,000 Q-factor relaxation oscillator with switched-capacitor integrated error feedback,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013, pp. 402-403.
[24] A. Paidimarri, D. Griffith, A. Wang, and A. P. Chandrakasan, “A 120nW 18.5kHz RC oscillator with comparator offset cancellation for ±0.25 % temperature stability,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 184-185, Feb. 2013.
[25] K. Sundaresan, P. E. Allen, and F. Ayazi, “Process and temperature compensation in a 7-MHz CMOS clock oscillator,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 433-442, Feb. 2006.
[26] J. Lee, and S.-H. Cho, “A 10MHz 80μW 67 ppm/°C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18μm CMOS,” IEEE Symp. On VLSI, 2009, pp. 226-227.
[27] C.-C. Chung, and C.-R. Yang, “An autocalibrated all-digital temperature sensor for On-Chip thermal monitoring,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no.2, pp. 105-109, Feb. 2011.
[28] K.-H. Cheng, J.-C. Liu, and H.-Y. Huang, “A 0.6-V 800-MHz all-digital phase-locked loop with a digital supply regulator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 12, pp. 888-892, Jan. 2013.
[29] Y.-C. Shih, and B. Otis, “An on-chip tunable frequency generator for crystal-less low-power WBAN radio,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 4, pp. 187-191, Mar. 2013.
[30] K. Ueno, T. Hirose, T. Asai, and Y. Amemiya, “A 300 nW, 15 ppm/°C, 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2047-2054, Feb. 2009.
[31] R. Vijayaraghavan, S. K. Islam, M. R. Haider, and L. Zuo, “Wideband injection-locked frequency divider based on a process and temperature compensated ring oscillator,” IET Circuits, Devices & Systens, vol. 3, no. 5, pp. 259-267, Oct. 2009.
[32] X. Zhang, and A. B. Apsel, “A low-power, process and temperature compensated ring oscillator with addition-based current source,” IEEE Trans. Circuits Syst. I, Regular Papers, vol. 58, no. 5, pp. 868-878, Jun. 2010.
[33] G. Wu, K. Sun, S. Guo, and T. Zhang, “A low-voltage and temperature compensated ring VCO design,” IEEE Dallas Circuits and Systems Conf., 2014, pp. 1-4. |