參考文獻 |
[1]聯合報:逾四成老人在家中跌倒,浴室、樓梯最危險.[Online]. Available: http://www.uho.com.tw/hotnews.asp?aid=39414. [Accessed: 09-Jun-2016].
[2] 台灣病人通報資訊網. [Online]. Available:
http://117.56.33.147/Content/Downloads/List01.aspx?SiteID=1&MmmID=621273303702500244. [Accessed: 09-Jun-2016].
[3] J. Y. Hwang, J. M. Kang, Y. W. Jang, and H. C. Kim, “Development of Novel Algorithm and Real-time Monitoring Ambulatory System Using Bluetooth Module for Fall Detection in the Elderly,” in 26th Annual International Conference of the IEEEEngineering in Medicine and Biology Society, pp. 2204-2207, 2004.
[4] M. Alwan, P. J. Rajendran, S. Kell, D. Mack, S. Dalal, M. Wolfe, and R. Felder, “A Smart and Passive Floor-Vibration Based Fall Detector for Elderly,” in 2nd International Conference on Information andCommunication Technologies, pp. 1003-1007, 2006.
[5] Y. Lee, J. Kim, M. Son, and M. Lee, “Implementation of Accelerometer Sensor Module and Fall Detection Monitoring System based on Wireless Sensor Network,” in 29th Annual International Conference ofthe IEEE Engineering in Medicine and Biology Society, pp. 2315-2318, 2007.
[6]F. Sposaro and G. Tyson, “iFall: An android application for fall monitoring and response,” in 2009 Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, pp. 6119-6122, 2009.
[7] A. Sixsmith and N. Johnson, “A smart sensor to detect the falls of the elderly,”inIEEE Pervasive Computing, vol. 3, no. 2, pp. 42-47, 2004.
[8] D. Anderson, J. M. Keller, M. Skubic, X. Chen,and Z. He, “Recognizing Falls from Silhouettes,”in 28th Annual International Conference of the IEEEEngineering in Medicine and Biology Society, pp. 6388-6391, 2006.
[9] C. Rougier, J. Meunier,A. St-Arnaud,and J. Rousseau, “Monocular 3D Head Tracking to Detect Falls of Elderly People,”in 28th Annual International Conference of the IEEEEngineering in Medicine and Biology Society, pp. 6384-6387, 2006.
[10] C. Rougier, J. Meunier, A. St-Arnaud, and J. Rousseau, “Robust Video Surveillance for Fall Detection Based on Human Shape Deformation,” in IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 5, pp. 611-622, 2011.
[11] S. G. Miaou, P. H.Sung,and C. Y.Huang, “A Customized Human Fall Detection System Using Omni-Camera Images and Personal Information,”in1st Transdisciplinary Conference on Distributed Diagnosis and Home Healthcare,pp. 39-42, 2006.
[12] E. Auvinet, F. Multon, A. Saint-Arnaud, J. Rousseau, and J. Meunier, “Fall Detection With Multiple Cameras: An Occlusion-Resistant Method Based on 3-D Silhouette Vertical Distribution,” IEEE Transactions on Information Technology in Biomedicine, vol. 15, no. 2, pp. 290-300, 2011.
[13] G. Mastorakis and D. Makris, “Fall detection system using Kinect’s infrared sensor,” Real-TimeImageProcessing,vo1.9,no.4,pp.635-646,2014.
[14] R. Planinc and M. Kampel, “Introducing the use of depth data for fall detection,” Personal and Ubiquitous Computing, vol. 17, no. 6, pp. 1063-1072, 2013.
[15] A. N. Belbachir, A. Nowakowska, S. Schraml, G. Wiesmann,and R. Sablatnig, “Event-driven feature analysis in a 4D spatiotemporal representation for ambient assisted living,”in 13thInternational Conference on Computer Vision,pp. 1570-1577, 2011.
[16] M. Yu, Y. Yu, A. Rhuma, S. M. R. Naqvi, L. Wang, and J. A. Chambers, “An Online One Class Support Vector Machine-Based Person-Specific Fall Detection System for Monitoring an Elderly Individual in a Room Environment,” Biomedical and Health Informatics,vol. 17, no.6, pp. 1002-1014, 2013.
[17] M.Kepski, B. Kwolek, and I. Austvoll, “Fuzzy Inference-Based Reliable Fall Detection Using Kinect and Accelerometer,” in InternationalConferenceonArtificialIntelligenceandSoftComputing,pp.266-273,2012.
[18] Wikipedia-Hopfield network. [Online]. Available:
https://en.wikipedia.org/wiki/Hopfield_network. [Accessed: 08-Jun-2016].
[19] 類神經網路簡介. [Online]. Available:
http://www.mantraco.com.tw/tao/2003/D230705.htm. [Accessed: 09-Jun-2016].
[20] 蘇木春、張孝德編著, 機器學習:類神經網路、模糊系統以及基因演算法則,第二版,全華科技圖書,民國一百零一年。
[21] Wikipedia-Radial basis function. [Online]. Available:
https://en.wikipedia.org/wiki/Radial_basis_function. [Accessed: 08-Jun-2016].
[22] Wikipedia-Support Vector machine. [Online]. Available:
https://en.wikipedia.org/wiki/Support_vector_machine. [Accessed: 08-Jun-2016].
[23] C. W. Hsu andC. J. Lin, “A Comparison of Methods for Multiclass Support Vector Machines,” IEEE Transaction on Neural Networks, vol. 13, no. 2, pp. 415-425, 2002.
[24] 陳盈秀,「SVM類神經網路於單調性資料探勘之研究」,成功大學工業與資訊管理學系專班,2009。
[25] 深度學習-人工智能的現在與未來. [Online]. Available:
http://pansci.asia/archives/56816. [Accessed: 14-Jun-2016].
[26] Nicola Jones, “The Learning Machines,” Nature, vol. 505, pp.146-148, Jan. 2014.
[27] Y. Bengio, “Learning Deep Architectures for AI,” in Foundations and Trends in Machine Learning, vol. 2, no. 1, pp 1-127, 2009.
[28] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature,vol. 521, no. 7553, pp.436-444, 2015.
[29] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, pp.85-117, 2015.
[30] Wikipedia -convolution neural network. [Online]. Available:
https://en.wikipedia.org/wiki/Convolutional_neural_network.
[Accessed: 28-Jun-2016].
[31] G. E. Hinton,” A Practical Guide to Training Restricted Boltzmann Machines,” in Neural Networks: Ticks of the Trade, Second Edition, Springer, pp. 599-619, 2012.
[32] M. Á. Carreira-Perpiñánand G. Hinton, “On Contrastive Divergence Learning,” Artificial Intelligence and Statistics, vol. 10,pp. 33-40,2005.
[33] Wikipedia-restricted Boltzmann machine. [Online]. Available:
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine. [Accessed: 28-Jun-2016].
[34]Deep belief networks.[Online].Available:
http://www.scholarpedia.org/article/Deep_belief_networks.[Accessed: 28-Jun-2016].
[35] Wikipedia-Standard Deviation. [Online]. Available:
https://en.wikipedia.org/wiki/Standard_deviation. [Accessed: 09-Jun-2016].
[36] Wikipedia-Principal component analysis. [Online]. Available:
https://en.wikipedia.org/wiki/Principal_component_analysis. [Accessed: 09-Jun-2016].
[37] Sensitivity and Specificity. [Online]. Available:
http://www.med.uottawa.ca/sim/data/Sensitivity_e.htm. [Accessed: 09-Jun-2016].
[38] Wikipedia-Cohen’s kappa. [Online]. Available:
https://en.wikipedia.org/wiki/Cohen%27s_kappa. [Accessed: 09-Jun-2016].
[39] 崔懷芝,「量表信度的測量:Kappa統計量之簡介」,中國醫藥大學生物統計研究所,2014。
[40]交叉驗證(cross validation). [Online].Available:
https://cg2010studio.com/2012/10/22/%E4%BA%A4%E5%8F%89%E9%A9%97%E8%AD%89-cross-validation/. [Accessed: 09-Jun-2016].
[41] Neuroph Studio. [Online]. Available:
http://neuroph.sourceforge.net/. [Accessed: 10-Jun-2016].
[42]tensorflow.[Online].Avaliable:
https://www.tensorflow.org/versions/r0.8/tutorials/mnist/tf/index.html.[Accessed: 28-Jun-2016].
[43] Libsvm. [Online]. Available:
https://www.csie.ntu.edu.tw/~cjlin/libsvm/. [Accessed: 10-Jun-2016].
[44] RBFN Matlab. [Online]. Available:
http://www.mathworks.com/help/nnet/ref/newrb.html. [Accessed: 10-Jun-2016].
[45] nntool Matlab. [Online]. Available:
http://www.mathworks.com/help/nnet/ref/nntool.html. [Accessed: 10-Jun-2016].
[46] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.
[47]F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise timing with lstm recurrent networks,” The Journal of MachineLearning Research, vol. 3, pp. 115-143, 2003. |