博碩士論文 995401010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:161 、訪客IP:18.118.10.36
姓名 袁碩璜(Shuo-Huang Yuan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 金屬奈米粒子於有機光電晶體光偵測特性之研究
(Effect of Metallic Nanoparticles on the Photodetection Behavior of an Organic Phototransistor)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 高效能矽鍺互補型電晶體之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文研究金屬奈米粒子有機光電晶體(organic phototransistor, OPT)之元件光電特性。主要具體成果有四項: 第一,我們研究氧化鋁/聚甲基丙烯酸甲酯(PMMA)堆疊式絕緣層對有機電晶體漏電流的影響。和單層PMMA相比,堆疊式絕緣層除了可以有效地降低漏電流密度外,更可以進一步降低半導體的空乏電容。較低的空乏電容可歸因於較佳的並五苯的薄膜結晶,進一步提升有機薄膜電晶體的場效遷移率。第二,我們利用持續照光下電晶體的轉移特性曲線來探討金奈米粒子對光電晶體能量轉換效率的影響。在光照射下,含有金奈米粒子之有機光電晶體的汲極電流大幅度增加,且能量轉換明顯地從10.23%增加到18.03%。這結果說明可以透過金奈米粒子表面電漿共振的方式將光子能量聚集到半導體內,提升局部照光強度,進而增加能量的轉移效率。第三,展示金奈米粒子有效增強光電晶體在深紫外光光感測的能力。透過製程最佳化,可以精確地控制金奈米粒子在10nm以下。在240nm光波長照射下,無奈米粒子之光電晶體光響應為1.6 安培/瓦。而金奈米粒子之光電晶體,光響應可以提升至4.5 安培/瓦。第四、研究銀奈米粒子尺寸對有機光電晶體光響應度的影響。在白光照射下,當閘極電壓小於-20V,最大光響應度落在銀奈米粒子尺寸9-22奈米(2nm厚)。
摘要(英) In this thesis, we investigated the photodetection capability of organic phototransistors (OPTs) with metallic nanoparticles decoration. The main features encompass as follows. First, we investigated the effect of Al2O3/PMMA stack dielectrics on OTFT performance in terms of leakage and depletion capacitance. Compared to the OTFTs with single-layer PMMA, OTFTs with stacked-dielectrics exhibit better leakage-current blocking ability and a lower depletion capacitance thanks to better pentacene crystallinity.
Secondly, we investigated the photo energy transfer efficiency enhancement by gold nanoparticles (Au NPs) for OPTs. We elucidated the transfer characteristics of OPTs without and with Au NPs layers under illuminationor not. Au NPs OPTs exhibit dramatic enhancement in drain current under illumination and significant increment in energy transfer efficiency accordingly. The energy transfers efficiency is 10.23 and 18.03% for OPTs with and without Au NPs, respectively. This result indicates that surface plasmon resonance greatly facilities the transfer of photon energy in semiconductor through the enhancement of localized light intensity.
Thirdly, we have successful demonstrated that inclusion of Au NPs within Opts is conducive for deep UV detection. The size of Au NPs size is smaller than 10nm by precisely designed deposition process. The responsivity changes from 1.6 to 4.5 A/W when we included the Au NPs into OPTs.
Fourthly, we investigated the effect of silver nanoparticles (Ag NPs) size on OPTs photo-detection. As the gate voltage is greater than -20 V, pentacene OTFTs with 2nm-thick Ag-NP decoration exhibited the highest responsivity.
關鍵字(中) ★ 有機光電晶體
★ 並五苯
★ 金奈米粒子
★ 銀奈米粒子
★ 表面電漿共振
關鍵字(英) ★ organic phototransistor
★ pentacene
★ gold nanoparticles
★ silver nanoparticles
★ surface plasmon resonance
論文目次 中文摘要 I
ABSTRACT II
誌謝 IV
TABLE OF CONTENTS V
TABLE OF CAPTIONS VII
FIGURE OF CAPTIONS VIII
Chapter 1 Introduction 1
1.1 Background of Organic Phototransistor 1
1.2 Challenges in OPT design 2
1.3 Organization of Thesis 4
Chapter 2 Theoretical background 5
2-1 Atomic and Molecular Orbitals and Localized and Delocalized States 5
2-2 Dielectric Interface Engineering 9
2-3 Organic Thin Film Transistor and Phototransistor Parameter Definitions 12
2-4 Optoelectronic Transition in Organic Semiconductors 14
2-5 Quantum Plasmonics of Metallic Nanoparticles 19
Chapter 3 Organic Thin Film Transistors with Al2O3/ Poly(methyl methacrylate) Stack Dielectric 26
3.1 Introduction 26
3.2 Experimental 27
3.3 PMMA Thickness Limitation on Organic Phototransistor 29
3.4 Conclusion 36
Chapter 4 Kinetic Energy Transfer from Au Nanoparticle Surface Plasmon Resonance in Pentacene Phototransistor 37
4.1 Introduction 37
4.2 Experimental 38
4.3 Optical Properties of Au NPs 39
4.4 Au NPs OPTs performance under 532nm light illumination 40
Chapter 5 Au Nanoparticle Light Scattering Enhanced Responsivity in Pentacene Phototransistor for Deep-UV Light Detection 49
5.1 Introduction 49
5.2 Experimental 50
5.3 The influence of gold nanoparticles on OTFTs performance 51
5.4 Photo behavior of gold nanoparticles on OTFTs performance 53
5.5 Responsivity and sensitivity of OPTs performance 55
5.6 Conclusion 57
Chapter 6 Pentacene Phototransistor with Silver Nanoparticles Decoration 58
6.1 Introduction 58
6.2 Experimental 60
6.3 Optical property and surface morphology of silver nanoparticles 61
6.4 Silver nanoparticles size effect on OPTs performance 64
6.5 Conclusion 70
Chapter 7 Conclusion 71
Reference 73
PUBLICATION LIST 92
參考文獻 Chapter 1
[1] M. Pope, C. E. Swenberg, “Electronic Processes in Organic Crystals”, Ann. Rev. Phys. Chem., vol. 35, pp. 613, 1984.
[2] D. F. Barbe, C. R. Westgate, “SURFACE STATE PARAMETERS OF METAL-FREE PHTHALOCYANINE SINGLE CRYSTALS”, J. Phys. Chem. Solids., vol. 31, pp. 2679, 1970.
[3] M. L. Petrova, L. D. Rozenshtein, Fiz. Tverd. Tela, “Field effect in organic semiconductors”, Sov. Phys. D. SolidState, vol. 12, pp. 961, 1970.
[4] [5] G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, “A field-effect transistor based on conjugated alpha-sexithienyl”, Solid State Commun., vol. 72, pp. 381, 1989.
[5] K. S. Narayan , N. Kumar, “Light responsive polymer field-effect transistor”, Appl. Phys. Lett., vol. 79, pp. 1891, 2001.
[6] L. L. Lavery , G. L. Whiting , A. C. Arias, “All ink-jet printed polyfluorene photosensor for high illuminance detection”, Org. Electron, vol. 12, pp. 682, 2011.
[7] D. Ghezzi , M. R. Antognazza , M. Dal Maschio , E. Lanzarini , F. Benfenati , G. Lanzani , “A hybrid bioorganic interface for neuronal photoactivation ”, Nat. Commun., vol. 2, pp. 166, 2011.
[8] K. H. Kim , S. Y. Bae , Y. S. Kim , J. A. Hur , M. H. Hoang , T. W. Lee , M. J. Cho , Y. Kim , M. Kim , J.-I. Jin , S.-J. Kim , K. Lee , S. J. Lee , D. H. Choi, “Highly Photosensitive J-Aggregated Single-Crystalline Organic Transistors” , Adv. Mater., vol. 23, pp. 3095, 2011.
[9] Y.Y. Lin, D.J. Gundlach, S. Nelson, T.N. Jackson, “Pentacene-based organic thin-film transistors ”, IEEE Transactions Electron Devices, vol. 44, pp. 1325, 1997.
[10] Y.Y. Noh, J. Ghim, S.J. Kang, K.J. Baeg, D.Y. Kim, “Effect of light irradiation on the characteristics of organic field-effect transistors”, J. appl. phys., vol.100, pp.094501, 2006.
[11] F. Yan, J Li, S. M. Mok ,“Highly photosensitive thin film transistors based on a composite of pol(3-hexylthiophene) and titania nanoparticles”, J. appl. phys., vol.106, pp.074501, 2009.
[12] M. C. Hamilton, S. Marti, J. Kanicki, “Thin-Film Organic Polymer Phototransistors”, IEEE TRANS. ELECTRON DEVICES, vol. 51, pp. 877, 2004
[13] K. Harada, M. Riede, K. Leo, O. R. Hild, and C. Michael Elliott, “Pentacene homojunctions: Electron and hole transport properties and related photovoltaic responses,” Phys. Rev. B, Condens. Matter, vol. 77, p. 195212, 2008.
[14] M. Debucquoy, S. Verlaak, S. Steudel, K. Myny, J. Genoe, and P. Heremans, “Correlation between bias stress instability and phototransistor operation of pentacene thin-film transistors,” Appl. Phys. Lett., vol. 91, no. 10, pp. 103508, 2007.
[15] Y. Guo, C. Du, C.-A. Di, J. Zheng, X. Sun, Y. Wen, L. Zhang, W. Wu, G. Yu, and Y. Liu, “Field dependent and high light sensitive organic phototransistors based on linear asymmetric organic semiconductor,” Appl. Phys. Lett., vol. 94, pp. 143303, 2009.
[16] Y.-Y. Noh, D.-Y. Kim, and K. Yase, “Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance,” J. Appl. Phys., vol. 98, pp. 074505, 2005.
[17] M. C. Hamilton, S. Martin, and J. Kanicki, “Thin-film organic polymer phototransistors,” IEEE Trans. Electron Devices, vol. 51, pp. 877, Jun. 2004.
[18] C. Goldmann, S. Haas, C. Krellner, K.P. Pernstich, D.J. Gundlach, B. Batlogg, “Hole mobility in organic single crystals measured by a “flip-crystal” field-effect technique”, Journal of Applied Physics, vol. 96, pp. 2080, 2004.
[19] C. Bock, D. V. Pham, U. Kunze, D. Kafer, G. Witte, C. Woll, “Improved morphology and charge carrier injection in pentacene field-effect transistors with thiol-treated electrodes”, J. Appl. Phys., vol. 100, pp. 114517, 2006.
[20] Y. Zhou, M.L. Bruening, D.E. Bergbreiter, R.M. Crooks, and M. Wells, "Hyperbranched Polymer Films Grafted on a Self-assembled Monolayer", J. Am. Chem. Soc., 118, 3773-3774 (1996).
[21] I. Kymissis, Organic Field Effect Transistors: Theory, Fabrication and Characterization, Columbia University, New York, NY, USA, 2008.
[22] D. J. Milliron, L. Gur, and A.P. Alivisatos, “Hybrid organic-nanocrystal solar cells”, MRS Bulletin, vol. 30, pp. 41, 2005.
[23] P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D.S.Ginger, “Plasmon-Enhanced Charge carrier Generation in Organic Photocoltaic Films Using Silver Nanoprisms”, Nano Lett., vol. 10, pp. 1501, 2010.
[24] J. J. H. Pijpers, R. Ulbricht, K. J. Tielrooij, A. Osherov, Y. Golan, C. Delerue, G. Allan, M. Bonn, “Assessment of carrier-multiplication efficiency in bulk PbSe and PbS” Nat. Phys., vol. 5, pp. 811, 2009.
[25] J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation”, Nat. Mater., vol. 9, pp. 193, 2012.
[26] C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, “Layered Graphene/Quantum Dots for Photovoltaic Devices”, MRS Bull., vol. 49, pp. 3014, 2010.
[27] Z. P. Yang, L. J. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, “Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array”, Nano Lett., vol. 8, pp. 446, 2008.
[28] H. Zhou, A. Colli, A. Ahnood, Y. Yang, N. Rupesinghe, T. Bulter, I. Haneef, P. Hiralal, A. Nathan, G. A. J. Amaratunga, “Arrays of Parallel Connected Coaxial Multiwall-Carbon Nanotube-Amorphous-Silicon Solar Cells”, Adv. Mater., vol. 21, pp. 3919, 2009.
[29] N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, P. L. McEuen, “Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes” Science, vol. 325, pp. 1367, 2009.
[30] J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-Walled Carbon Nanotube Solar Cells”, Nano Lett., vol. 7, pp. 2317, 2007.
[31] Y. Jia, J. Wei, K. Wang, A. Cao, Q. Shu, X. Gui, Y. Zhu, D. Zhuang, G. Zhang, B. Ma, L. Wang, W. Liu, Z. Wang, J. Luo, D. Wu, “Nanotube-Silicon Heterojunction Solar Cells”, Adv. Mater., vol. 20, pp.4594, 2008.
[32] E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells”, IEEE Transactions on Electron Devices, vol. 29, pp.300, 1982.
[33] L. S. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings”, Adv. Mater., vol. 12, pp. 189, 2000.
[34] P. Peumans, V. Bulovic, S.R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterosture photovoltaic diodes”, Appl. Phys. Lett., vol. 76, pp. 2650, 2000.
[35] P. Campbell, M. A. Green, “Light trapping properties of pyramidally textured surfaces”, J. appl. Phys., vol. 62, pp. 243, 1987.
[36] M. Agrawal, P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells”, Opt. Express, vol. 16, pp.5358, 2008.
[37] S. Rim, S. Zhao, S. R. Scully, M. D. McGehee, P. Peumans, “An effective light trapping configuration for thin-film solar cells”, Appl. Phys. Lett., vol. 91, pp. 243501-1, 2007.
[38] A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, “Thin-film silicon solar cell technology”, Prog. Photovoltaics Res Appl., vol. 12, pp. 113, 2004.
[39] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals”, Opt. Express, vol. 15, pp. 16986, 2007.
[40] S. Lai, S. Link, N. Halas, “Nano-optics from sensing to waveguiding”, Nat. Phot., vol. 1, pp. 641, 2007.
[41] M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, G.Bruno, “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance”, Solar energy Mater. & Solar Cells, vol. 93, pp. 1749, 2009.

Chapter 2
[1] W. Kutzelnigg, “Friedrich Hund and Chemistry”, Angewandte Chemie, vol. 35, pp. 573, 1996.
[2] C. A. Coulson, Valence (Oxford University Press)
[3] J.N. Murrell, “The mobility of holes and electrons in organic crystals”, Molecular Phys., vol. 4, pp. 205, 1961.
[4] T. Hirao, K. Saito, “A three-dimensionally oriented π-conjugated system; synthesis and characterization of porphyrins bearing π-conjugated pendant strands”, Tetrahedron Letters, vol. 41, pp. 1413, 2000.
[5] John Wilfred Orton, The Story of Semiconductors (Oxford University Press)
[6] Eley, Parfitt, Perry and Taysum, “The semiconductivity of organic substances. Part 1”, Trans. Faraday Soc., vol. 49, pp. 79, 1953.
[7] G. Kemeny, and B. Rosenberg, “Theory of the Pre‐exponential Factor in Organic Semiconductors”, J.Chem. Phys., vol. 52, pp. 4151, 1970.
[8] G Montambaux, “Polaron density of states of a hole in a narrow band of an alternate lattice of fermions”, J. Phys. C: Solid State Phys. vol. 15, pp. 4523, 1982.
[9] C. Soci, D. Moses, Q. H. Xu, A. J. Heeger, “Charge-carrier relaxation dynamics in highly ordered poly(p-phenylene vinylene): Effects of carrier bimolecular recombination and trapping”, Phys. Rev. B, vol. 72, pp. 245204, 2005.
[10] V. I. Krinichnyi, “Relaxation and dynamics of charge carriers in organic polymer semiconductors: Polyacetylene (review)”, Physics of the Solid State, vol. 39, pp. 1, 1997.
[11] M. M. Ling, Z. Bao, “Thin Film Deposition, Patterning, and Printing in Organic Thin Film Transistors”, Chem. Mater., vol. 16, pp. 4824, 2004.
[12] A. Ulman, “Formation and Structure of Self-Assembled Monolayers”, Chem. Rev., vol. 96, pp. 1533, 1996.
[13] P. E. Laibinis, J. J. Hickman, M. S. Wrighton, G. M. Whitesides, “Orthogonal Self-Assembled Monolayers: Alkanethiols on Gold and Alkane Carboxylic Acids on Alumina”, Science, vol. 245, pp. 845, 1989.
[14] B. S. A. DiBenedetto, A. Facchetti, M. A. Ratner, T. J. Mark, “Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications”, Adv. Mater., vol. 21, pp. 1407, 2009.
[15] P.F. Baude, D.A. Ender, T.W. Kelley, M.A. Haase, D.V. Muyres, Theiss S.D., Electron Devices Meeting IEDM Technical Digest, pp. 8.1.1, 2003.
[16] J. Veres, S. Ogier, G. Lloyd, “Gate Insulators in Organic Field-Effect Transistors”, Chem. Mater., vol. 16, pp. 4543, 2004.


Chapter 3
[1] M. Shtein, J. Mapel, J. B. Benziger, S. R. Forrest, "Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors", vol. 81, pp. 268, 2002.
[2] D. Knipp, R. A. Street, A. Volkel, J. Ho, "Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport", vol. 93, pp. 347, 2003.
[3] J. Lee, J. H. Kim, S. Im, D.Y. Jung, "Threshold voltage change due to organic-inorganic interface in pentacene thin-film transistors", vol. 96, pp. 2301, 2004.
[4] C.Y. Wei, F. Adriyanto, Y.J. Lin, Y.C. Li, T.J. Huang, “Pentacene-Based Thin-Film Transistors With a Solution-Process Hafnium Oxide Insulator”, IEEE ELECTRON DEVICE LETT., VOL. 30, pp. 1039, 2009.
[5] H. Reisinger, G. Steinlesberger, S. Jakschik, M. Gutsche, T. Hecht, M. Leonhard, U. Schroder, H. Seidl, and D. Schumann, “A comparative study of dielectric relaxation losses in alternative dielectrics,” in IEDM Tech. Dig., pp. 12.2.1–12.2.4, 2001.
[6] J. R. Jameson, P. B. Griffin, A. Agah, J. D. Plummer, H.-S. Kim, D. V. Taylor, P. C. Mclntyre, and W. A. Harrison, “Problems with metal-oxide high-k dielectrics due to 1/t dielectric relaxation current in amorphous materials,” in IEDM Tech. Dig., pp. 4.3.1–4.3.4, 2003.
[7] A. K. Jonscher, Dielectric Relaxation in Solids. New York: Chelsea, 1983.
[8] H. Bachhofer, H. Reisinger, E. Bertagnolli, and H. von Philipsborn, “Transient conduction in multidielectric silicon-oxide-nitride-oxide semiconductor structures,” J. Appl. Phys., vol. 89, pp. 2791–2800, 2001.
[9] D. J. Dumin and J. R. Maddux, “Correlation of stress-induced leakage current in thin oxides with trap generation inside the oxides,” IEEE Trans. Electron Devices, vol. 40, pp. 986–993, Oct. 1993.
[10] D. R. Wolters and J. J. van der Schoot, “Kinetics of charge trapping in dielectrics,” J. Appl. Phys., vol. 58, pp. 831–837, 1985.
[11] W. D. Zhang, J. F. Zhang, M. J. Lalor, D. R. Burton, G. Groeseneken, R. Degraeve, "Effects of detrapping on electron traps generated in gate oxides", Semicond. Sci. Technol., vol. 18, pp.174, 2003.
[12] H. E. Katz, X. M. Hong, A. Dodabalapur, R. Sarpeshkar, “Organic field-effect transistors with polarizable gate insulators”, J. APPL. PHYS., vol. 91, pp.1572, 2002.
[13] G. Gu, M. G. Kane, J. E. Doty, A. H. Firester, “Electron traps and hysteresis in pentacene-based organic thin-film transistors”, APPL. PHYS. LETT., vol. 87, pp. 243512, 2005.
[14] D. K. Hwang, Kimoon Lee, Jae Hoon Kim, and Seongil Im, “Comparative studies on the stability of polymer versus SiO2 gate dielectrics for pentacene thin-film transistors”, APPL. PHYS. LETT., vol. 89, pp. 093507, 2006.
[15] Cheon An Lee, Dong-Wook Park, Keum-Dong Jung, Byung-ju Kim, Yoo Chul Kim, Jong Duk Lee, and ByungGook Park, “Hysteresis mechanism in pentacene thin-film transistors with poly(4-vinyl phenol) gate insulator”, Appl. Phys. Lett., vol. 89, pp. 262120, 2006.
[16] W. L. Kalb, K. Mattenberger, B. Batlogg, “Oxygen-related traps in pentacene thin films: Energetic position and implications for transistor performance”, Phys. Rev. B, vol. 78, pp. 035334, 2008.
[17] N.A. Yufa, S.L. Fronk, S.J. Rosenthal, Seth B. Darling, W.A. Lopes, S.J. Sibener, “Self-assembled monolayer-modified block copolymers for chemical surface nanopatterning”, Materials Chemistry and Physics, vol. 125, pp. 382, 2011.

Chapter 4
[1] N. Ai, Y. Zhou, Y. Zheng, H. Chen, J. Wang, J. Pei, Y. Cao, “Achieving high sensitivity in single organic submicrometer ribbon based photodetector through surface engineering”, Org. Electronics, vol. 14, pp. 1103–1108, 2013.
[2] A. E. Amrani, B. Lucasb, B. Ratier, " The effect of the active layer thickness on the performance of pentacene-based phototransistors", Synth. Metals, vol. 161, pp. 2566, 2012.
[3] P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, " Expanding the Optical Trapping Range of Gold Nanoparticles", Nano Lett., vol. 5, pp. 1937, 2005.
[4] L. Bosanac, T. Aabo, P. M. Bendix, L. B. Oddershede, " Ef?cient Optical Trapping and Visualization of Silver Nanoparticles", Nano Lett., vol. 8, pp. 1486, 2008.
[5] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, F. H. L. Koppens, " Hybrid graphene–quantum dot phototransistors with ultrahigh gain", Nat. Nanotechnology, vol. 7, pp.363, 2012.
[6] M. S. Tame, K. R.McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, M. S. Kim, " Quantum plasmonics", Nat. Phys., vol 9, pp. 329, 2013.
[7] X. Yang, W. Liu, M. Xiong, Y. Zhang, T. Liang, J. Yang, M. Xu, J. Ye, H. Chen, "Au nanoparticles on ultrathin MoS2 sheet for plasmonic organic solar cells", J. Mater. Chem. A, vol. 2, pp. 14798, 2014.
[8] J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, W. Lu, " Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays", small, vol. 11, pp. 2392, 2015.
[9] S. H. Yuan, Z. W. Pei, H. C. Lai, C. H. Chen, P. W. Li, Y. J. Chan, " Au Nanoparticle Light Scattering Enhanced Responsivity in Pentacene Phototransistor for Deep-UV Light Detection", Electron Device Lett., vol. 36, pp. 1186, 2015.
[10] Y. Zhang, H. Li, L. Wang, H. Wang, X. Xie, S.L. Zhang, R. Liu, Z.J. Qiu, “Photothermoelectric and photovoltaic effects both present in MoS2”, sci. report, vol. 5, pp. 7938, 2015.
[11] R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons”, nat. phys., vol. 5, pp. 470, 2009.
[12] S. K. Cushing, N. Wu, “Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion”, J. Phys. Chem. Lett., vol. 7, pp. 666–675, 2016.
[13] Richard D. Yang, T. Gredig, Corneliu N. Colesniuc, Jeongwon Park, Ivan K. Schuller, William C. Trogler, and Andrew C. Kummel, “”, Appl. Phys. Lett., vol. 90, pp. 263506, 2007.
[14] S.C. Chen, K.H. Wu, J.-X. Li, A. Yabushita, S.H. Tang, C. W. Luo, J.Y. Juang, H.C.Kuo, Y.L. Chueh, “n-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy”, Sci Rep., vol. 5, pp. 18354, 2015.
[15] J. T. Mabeck, G. G. Malliaras, “Chemical and biological sensors based on organic thin film transistors”, Anal Bioanal Chem, vol. 384, pp. 343, 2006.
[16] H. J. Queisser and D. E. Theodorou, “Decay kinetics of persistent photoconductivity in semiconductors”, Phys. Rev. B, vol. 33, pp. 4027, 1986.
[17] S. Dhara1 and P. Giri, "Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires", Nanoscale Research Letters, vol.6, pp. 504, 2011.

Chapter 5
[1] C. J. Chiu, S. S. Shih, W.-Y. Weng, S.-J. Chang, Z. D. Hung, and T.-Y. Tsai, “Deep UV Ta2O5/zinc-indium-tin-oxide thin film phototransistor,” IEEE Photon. Technol. Lett., vol. 24, no. 12, pp. 1018–1020, Jun. 15, 2012.
[2] N. Ai, Y. Zheng, H. Chen, J. Wang, J. Pei, and Y. Cao, “Achieving high sensitivity in single organic submicrometer ribbon based photodetector through surface engineering,” Organic Electron., vol. 14, no. 4, pp. 1103–1108, 2013.
[3] B. Lucas, T. Trigaud, and C. Videlot-Ackermann, “Organic transistors and phototransistors based on small molecules,” Polym. Int., vol. 61, no. 3, pp. 374–389, 2012.
[4] [4] X. Liu, L. Tavares, A. Osadnik, J. L. Lausen, J. Kongsted, A. Lützen, H.-G. Rubahna, and J. Kjelstrup-Hansen, “Low-voltage organic phototransistors based on naphthyl end-capped oligothiophene nanofibers,” Organic Electron., vol. 15, no. 6, pp. 1273–1281, 2014.
[5] J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small, vol. 11, no. 20, pp. 2392–2398, 2015.
[6] M. S. Tame, K. R. McEnery, ¸ S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nature Phys., vol. 9, pp. 329–340, Jun. 2013.
[7] P. L. Truong, X. Ma, and S. J. Sim, “Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes,” Nanoscale, vol. 6, pp. 2307–2315, Dec. 2014.
[8] J. Lin, H. Li, H. Zhang, and W. Chen, “Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor,” Appl. Phys. Lett., vol. 102, no. 20, p. 203109, 2013.
[9] S. H. Yuan, Z. Pei, H. C. Lai, P. W. Li, and Y. J. Chan, “Pentacene phototransistor with gate voltage independent responsivity and sensitivity by small silver nanoparticles decoration,” Organic Electron., vol. 27, pp. 7–11, Dec. 2015.
[10] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene–quantum dot phototransistors with ultrahigh gain,” Nature Nanotechnol., vol. 7, pp. 363–368, May 2012.
[11] B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett., vol. 84, p. 4721, May 2000.
[12] R. Zakaria, W. K. Lin, and C. C. Lim, “Plasmonic enhancement of gold nanoparticles in poly(3-hexylthiophene) organic phototransistor,” Appl. Phys. Exp., vol. 5, p. 082002, Jul. 2012.
[13] Z. Pei, H.-C. Lai, J.-Y. Wang, W.-H. Chiang, and C.-H. Chen, “Highresponsivity and high-sensitivity graphene dots/a-IGZO thin-film phototransistor,” IEEE Electron Device Lett., vol. 36, no. 1, pp. 44–46, Jan. 2015.

Chapter 6
[1] N. Ai, Y. Zhou, Y. Zheng, H. Chen, J. Wang, J. Pei, Y. Cao, “Achieving high sensitivity in single organic submicrometer ribbon based photodetector through surface engineering ”, Org. Electron., vol. 14, pp. 1103, 2013.
[2] M.R.E. Rad, N.P. Papadopoulos, M. Bauza, A. Nathan, W.S. Wong, “Blue-Light-Sensitive Phototransistor for Indirect X-Ray Image Sensors”, IEEE Electron Device Lett., vol. 33, pp.567, 2012.
[3] Y.Y. Noh, D.Y. Kim, K. Yase, “Influence of the Dielectric PMMA Layer on the Detectivity of Pentacene-Based Photodetector With Field-Effect Transistor Configuration in Visible Region”, J. Appl., vol. 98, pp. 074505, 2005.
[4] B. Gunduz, O.A.A. Hartomy, S.A.F.A. Said, A.A. Ghamdi, F. Yakuphanoglu, “Controlling of photoresponse properties of pentacene thin film phototransistors by dielectric layer thickness and channel widths”, Synth. Met. vol. 179, pp. 94, 2013.
[5] Y. Hu, G. Dong, C. Liu, L. Wang, Y. Qiu, “Dependency of organic phototransistor properties on the dielectric layers”, Appl. Phys. Lett. Vol. 89, pp. 072108, 2006.
[6] H.W. Zan, S.C. Kao, “New Organic Phototransistor With Bias-Modulated Photosensitivity and Bias-Enhanced Memory Effect”, IEEE Electron Device Lett. Vol. 30, pp. 721, 2009.
[7] Y.W. Chang, Y.T. Tai, Y.T. Huang, “A Phototransistor-Based High-Sensitivity Biosensing System Using 650-nm Light”, IEEE Sens. J. vol. 9, pp. 673, 2009.
[8] S. Lee, S.E. Ahn, Y. Jeon, J.H. Ahn, I. Song, S. Jeon, D.J. Yun, J. Kim, H. Choi, U. Chung, J. Park, “Impact of transparent electrode on photoresponse of ZnO-based phototransistor”, Appl. Phys. Lett. Vol. 103, pp. 251111, 2013.
[9] H.A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices”, Nat. Mater. vol. 9, pp. 205, 2010.
[10] P.M. Hansen, V.K. Bhatia, N. Harrit, L. Oddershede, “Expanding the Optical Trapping Range of Gold Nanoparticles”, Nano Lett. vol. 5, pp.1937, 2005.
[11] J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, W. Lu, “Surface Plasmon‐Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays”, Small, vol. 11, pp. 2392, 2015.
[12] F.W. Vance, B.I. Lemon, J.T. Hupp, “Enormous Hyper-Rayleigh Scattering from Nanocrystalline Gold Particle Suspensions”, J. Phys. Chem. B, vol. 102, pp. 10091, 1998.
[13] A. Hirohata, Y.B. Xu, C.M. Guertler, “Spin-polarized electron transport in ferromagnet/semiconductor hybrid structures induced by photon excitation”, J.A.C. Bland, Phy. Rev. B, vol. 63, pp. 104425, 2001.
指導教授 李佩雯、詹益仁、裴靜偉、郭明庭(Pei-Wen Li Yi-Jen Chan Zing-Way Pei Ming-Ting Kuo) 審核日期 2016-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明