參考文獻 |
Chapter 1
[1] M. Pope, C. E. Swenberg, “Electronic Processes in Organic Crystals”, Ann. Rev. Phys. Chem., vol. 35, pp. 613, 1984.
[2] D. F. Barbe, C. R. Westgate, “SURFACE STATE PARAMETERS OF METAL-FREE PHTHALOCYANINE SINGLE CRYSTALS”, J. Phys. Chem. Solids., vol. 31, pp. 2679, 1970.
[3] M. L. Petrova, L. D. Rozenshtein, Fiz. Tverd. Tela, “Field effect in organic semiconductors”, Sov. Phys. D. SolidState, vol. 12, pp. 961, 1970.
[4] [5] G. Horowitz, D. Fichou, X. Z. Peng, Z. G. Xu, F. Garnier, “A field-effect transistor based on conjugated alpha-sexithienyl”, Solid State Commun., vol. 72, pp. 381, 1989.
[5] K. S. Narayan , N. Kumar, “Light responsive polymer field-effect transistor”, Appl. Phys. Lett., vol. 79, pp. 1891, 2001.
[6] L. L. Lavery , G. L. Whiting , A. C. Arias, “All ink-jet printed polyfluorene photosensor for high illuminance detection”, Org. Electron, vol. 12, pp. 682, 2011.
[7] D. Ghezzi , M. R. Antognazza , M. Dal Maschio , E. Lanzarini , F. Benfenati , G. Lanzani , “A hybrid bioorganic interface for neuronal photoactivation ”, Nat. Commun., vol. 2, pp. 166, 2011.
[8] K. H. Kim , S. Y. Bae , Y. S. Kim , J. A. Hur , M. H. Hoang , T. W. Lee , M. J. Cho , Y. Kim , M. Kim , J.-I. Jin , S.-J. Kim , K. Lee , S. J. Lee , D. H. Choi, “Highly Photosensitive J-Aggregated Single-Crystalline Organic Transistors” , Adv. Mater., vol. 23, pp. 3095, 2011.
[9] Y.Y. Lin, D.J. Gundlach, S. Nelson, T.N. Jackson, “Pentacene-based organic thin-film transistors ”, IEEE Transactions Electron Devices, vol. 44, pp. 1325, 1997.
[10] Y.Y. Noh, J. Ghim, S.J. Kang, K.J. Baeg, D.Y. Kim, “Effect of light irradiation on the characteristics of organic field-effect transistors”, J. appl. phys., vol.100, pp.094501, 2006.
[11] F. Yan, J Li, S. M. Mok ,“Highly photosensitive thin film transistors based on a composite of pol(3-hexylthiophene) and titania nanoparticles”, J. appl. phys., vol.106, pp.074501, 2009.
[12] M. C. Hamilton, S. Marti, J. Kanicki, “Thin-Film Organic Polymer Phototransistors”, IEEE TRANS. ELECTRON DEVICES, vol. 51, pp. 877, 2004
[13] K. Harada, M. Riede, K. Leo, O. R. Hild, and C. Michael Elliott, “Pentacene homojunctions: Electron and hole transport properties and related photovoltaic responses,” Phys. Rev. B, Condens. Matter, vol. 77, p. 195212, 2008.
[14] M. Debucquoy, S. Verlaak, S. Steudel, K. Myny, J. Genoe, and P. Heremans, “Correlation between bias stress instability and phototransistor operation of pentacene thin-film transistors,” Appl. Phys. Lett., vol. 91, no. 10, pp. 103508, 2007.
[15] Y. Guo, C. Du, C.-A. Di, J. Zheng, X. Sun, Y. Wen, L. Zhang, W. Wu, G. Yu, and Y. Liu, “Field dependent and high light sensitive organic phototransistors based on linear asymmetric organic semiconductor,” Appl. Phys. Lett., vol. 94, pp. 143303, 2009.
[16] Y.-Y. Noh, D.-Y. Kim, and K. Yase, “Highly sensitive thin-film organic phototransistors: Effect of wavelength of light source on device performance,” J. Appl. Phys., vol. 98, pp. 074505, 2005.
[17] M. C. Hamilton, S. Martin, and J. Kanicki, “Thin-film organic polymer phototransistors,” IEEE Trans. Electron Devices, vol. 51, pp. 877, Jun. 2004.
[18] C. Goldmann, S. Haas, C. Krellner, K.P. Pernstich, D.J. Gundlach, B. Batlogg, “Hole mobility in organic single crystals measured by a “flip-crystal” field-effect technique”, Journal of Applied Physics, vol. 96, pp. 2080, 2004.
[19] C. Bock, D. V. Pham, U. Kunze, D. Kafer, G. Witte, C. Woll, “Improved morphology and charge carrier injection in pentacene field-effect transistors with thiol-treated electrodes”, J. Appl. Phys., vol. 100, pp. 114517, 2006.
[20] Y. Zhou, M.L. Bruening, D.E. Bergbreiter, R.M. Crooks, and M. Wells, "Hyperbranched Polymer Films Grafted on a Self-assembled Monolayer", J. Am. Chem. Soc., 118, 3773-3774 (1996).
[21] I. Kymissis, Organic Field Effect Transistors: Theory, Fabrication and Characterization, Columbia University, New York, NY, USA, 2008.
[22] D. J. Milliron, L. Gur, and A.P. Alivisatos, “Hybrid organic-nanocrystal solar cells”, MRS Bulletin, vol. 30, pp. 41, 2005.
[23] P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, D.S.Ginger, “Plasmon-Enhanced Charge carrier Generation in Organic Photocoltaic Films Using Silver Nanoprisms”, Nano Lett., vol. 10, pp. 1501, 2010.
[24] J. J. H. Pijpers, R. Ulbricht, K. J. Tielrooij, A. Osherov, Y. Golan, C. Delerue, G. Allan, M. Bonn, “Assessment of carrier-multiplication efficiency in bulk PbSe and PbS” Nat. Phys., vol. 5, pp. 811, 2009.
[25] J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation”, Nat. Mater., vol. 9, pp. 193, 2012.
[26] C. X. Guo, H. B. Yang, Z. M. Sheng, Z. S. Lu, Q. L. Song, C. M. Li, “Layered Graphene/Quantum Dots for Photovoltaic Devices”, MRS Bull., vol. 49, pp. 3014, 2010.
[27] Z. P. Yang, L. J. Ci, J. A. Bur, S. Y. Lin, P. M. Ajayan, “Experimental Observation of an Extremely Dark Material Made By a Low-Density Nanotube Array”, Nano Lett., vol. 8, pp. 446, 2008.
[28] H. Zhou, A. Colli, A. Ahnood, Y. Yang, N. Rupesinghe, T. Bulter, I. Haneef, P. Hiralal, A. Nathan, G. A. J. Amaratunga, “Arrays of Parallel Connected Coaxial Multiwall-Carbon Nanotube-Amorphous-Silicon Solar Cells”, Adv. Mater., vol. 21, pp. 3919, 2009.
[29] N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, P. L. McEuen, “Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes” Science, vol. 325, pp. 1367, 2009.
[30] J. Wei, Y. Jia, Q. Shu, Z. Gu, K. Wang, D. Zhuang, G. Zhang, Z. Wang, J. Luo, A. Cao, D. Wu, “Double-Walled Carbon Nanotube Solar Cells”, Nano Lett., vol. 7, pp. 2317, 2007.
[31] Y. Jia, J. Wei, K. Wang, A. Cao, Q. Shu, X. Gui, Y. Zhu, D. Zhuang, G. Zhang, B. Ma, L. Wang, W. Liu, Z. Wang, J. Luo, D. Wu, “Nanotube-Silicon Heterojunction Solar Cells”, Adv. Mater., vol. 20, pp.4594, 2008.
[32] E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells”, IEEE Transactions on Electron Devices, vol. 29, pp.300, 1982.
[33] L. S. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, J. C. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings”, Adv. Mater., vol. 12, pp. 189, 2000.
[34] P. Peumans, V. Bulovic, S.R. Forrest, “Efficient photon harvesting at high optical intensities in ultrathin organic double-heterosture photovoltaic diodes”, Appl. Phys. Lett., vol. 76, pp. 2650, 2000.
[35] P. Campbell, M. A. Green, “Light trapping properties of pyramidally textured surfaces”, J. appl. Phys., vol. 62, pp. 243, 1987.
[36] M. Agrawal, P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells”, Opt. Express, vol. 16, pp.5358, 2008.
[37] S. Rim, S. Zhao, S. R. Scully, M. D. McGehee, P. Peumans, “An effective light trapping configuration for thin-film solar cells”, Appl. Phys. Lett., vol. 91, pp. 243501-1, 2007.
[38] A.V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, J. Bailat, “Thin-film silicon solar cell technology”, Prog. Photovoltaics Res Appl., vol. 12, pp. 113, 2004.
[39] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals”, Opt. Express, vol. 15, pp. 16986, 2007.
[40] S. Lai, S. Link, N. Halas, “Nano-optics from sensing to waveguiding”, Nat. Phot., vol. 1, pp. 641, 2007.
[41] M. Losurdo, M. M. Giangregorio, G. V. Bianco, A. Sacchetti, P. Capezzuto, G.Bruno, “Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance”, Solar energy Mater. & Solar Cells, vol. 93, pp. 1749, 2009.
Chapter 2
[1] W. Kutzelnigg, “Friedrich Hund and Chemistry”, Angewandte Chemie, vol. 35, pp. 573, 1996.
[2] C. A. Coulson, Valence (Oxford University Press)
[3] J.N. Murrell, “The mobility of holes and electrons in organic crystals”, Molecular Phys., vol. 4, pp. 205, 1961.
[4] T. Hirao, K. Saito, “A three-dimensionally oriented π-conjugated system; synthesis and characterization of porphyrins bearing π-conjugated pendant strands”, Tetrahedron Letters, vol. 41, pp. 1413, 2000.
[5] John Wilfred Orton, The Story of Semiconductors (Oxford University Press)
[6] Eley, Parfitt, Perry and Taysum, “The semiconductivity of organic substances. Part 1”, Trans. Faraday Soc., vol. 49, pp. 79, 1953.
[7] G. Kemeny, and B. Rosenberg, “Theory of the Pre‐exponential Factor in Organic Semiconductors”, J.Chem. Phys., vol. 52, pp. 4151, 1970.
[8] G Montambaux, “Polaron density of states of a hole in a narrow band of an alternate lattice of fermions”, J. Phys. C: Solid State Phys. vol. 15, pp. 4523, 1982.
[9] C. Soci, D. Moses, Q. H. Xu, A. J. Heeger, “Charge-carrier relaxation dynamics in highly ordered poly(p-phenylene vinylene): Effects of carrier bimolecular recombination and trapping”, Phys. Rev. B, vol. 72, pp. 245204, 2005.
[10] V. I. Krinichnyi, “Relaxation and dynamics of charge carriers in organic polymer semiconductors: Polyacetylene (review)”, Physics of the Solid State, vol. 39, pp. 1, 1997.
[11] M. M. Ling, Z. Bao, “Thin Film Deposition, Patterning, and Printing in Organic Thin Film Transistors”, Chem. Mater., vol. 16, pp. 4824, 2004.
[12] A. Ulman, “Formation and Structure of Self-Assembled Monolayers”, Chem. Rev., vol. 96, pp. 1533, 1996.
[13] P. E. Laibinis, J. J. Hickman, M. S. Wrighton, G. M. Whitesides, “Orthogonal Self-Assembled Monolayers: Alkanethiols on Gold and Alkane Carboxylic Acids on Alumina”, Science, vol. 245, pp. 845, 1989.
[14] B. S. A. DiBenedetto, A. Facchetti, M. A. Ratner, T. J. Mark, “Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications”, Adv. Mater., vol. 21, pp. 1407, 2009.
[15] P.F. Baude, D.A. Ender, T.W. Kelley, M.A. Haase, D.V. Muyres, Theiss S.D., Electron Devices Meeting IEDM Technical Digest, pp. 8.1.1, 2003.
[16] J. Veres, S. Ogier, G. Lloyd, “Gate Insulators in Organic Field-Effect Transistors”, Chem. Mater., vol. 16, pp. 4543, 2004.
Chapter 3
[1] M. Shtein, J. Mapel, J. B. Benziger, S. R. Forrest, "Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors", vol. 81, pp. 268, 2002.
[2] D. Knipp, R. A. Street, A. Volkel, J. Ho, "Pentacene thin film transistors on inorganic dielectrics: Morphology, structural properties, and electronic transport", vol. 93, pp. 347, 2003.
[3] J. Lee, J. H. Kim, S. Im, D.Y. Jung, "Threshold voltage change due to organic-inorganic interface in pentacene thin-film transistors", vol. 96, pp. 2301, 2004.
[4] C.Y. Wei, F. Adriyanto, Y.J. Lin, Y.C. Li, T.J. Huang, “Pentacene-Based Thin-Film Transistors With a Solution-Process Hafnium Oxide Insulator”, IEEE ELECTRON DEVICE LETT., VOL. 30, pp. 1039, 2009.
[5] H. Reisinger, G. Steinlesberger, S. Jakschik, M. Gutsche, T. Hecht, M. Leonhard, U. Schroder, H. Seidl, and D. Schumann, “A comparative study of dielectric relaxation losses in alternative dielectrics,” in IEDM Tech. Dig., pp. 12.2.1–12.2.4, 2001.
[6] J. R. Jameson, P. B. Griffin, A. Agah, J. D. Plummer, H.-S. Kim, D. V. Taylor, P. C. Mclntyre, and W. A. Harrison, “Problems with metal-oxide high-k dielectrics due to 1/t dielectric relaxation current in amorphous materials,” in IEDM Tech. Dig., pp. 4.3.1–4.3.4, 2003.
[7] A. K. Jonscher, Dielectric Relaxation in Solids. New York: Chelsea, 1983.
[8] H. Bachhofer, H. Reisinger, E. Bertagnolli, and H. von Philipsborn, “Transient conduction in multidielectric silicon-oxide-nitride-oxide semiconductor structures,” J. Appl. Phys., vol. 89, pp. 2791–2800, 2001.
[9] D. J. Dumin and J. R. Maddux, “Correlation of stress-induced leakage current in thin oxides with trap generation inside the oxides,” IEEE Trans. Electron Devices, vol. 40, pp. 986–993, Oct. 1993.
[10] D. R. Wolters and J. J. van der Schoot, “Kinetics of charge trapping in dielectrics,” J. Appl. Phys., vol. 58, pp. 831–837, 1985.
[11] W. D. Zhang, J. F. Zhang, M. J. Lalor, D. R. Burton, G. Groeseneken, R. Degraeve, "Effects of detrapping on electron traps generated in gate oxides", Semicond. Sci. Technol., vol. 18, pp.174, 2003.
[12] H. E. Katz, X. M. Hong, A. Dodabalapur, R. Sarpeshkar, “Organic field-effect transistors with polarizable gate insulators”, J. APPL. PHYS., vol. 91, pp.1572, 2002.
[13] G. Gu, M. G. Kane, J. E. Doty, A. H. Firester, “Electron traps and hysteresis in pentacene-based organic thin-film transistors”, APPL. PHYS. LETT., vol. 87, pp. 243512, 2005.
[14] D. K. Hwang, Kimoon Lee, Jae Hoon Kim, and Seongil Im, “Comparative studies on the stability of polymer versus SiO2 gate dielectrics for pentacene thin-film transistors”, APPL. PHYS. LETT., vol. 89, pp. 093507, 2006.
[15] Cheon An Lee, Dong-Wook Park, Keum-Dong Jung, Byung-ju Kim, Yoo Chul Kim, Jong Duk Lee, and ByungGook Park, “Hysteresis mechanism in pentacene thin-film transistors with poly(4-vinyl phenol) gate insulator”, Appl. Phys. Lett., vol. 89, pp. 262120, 2006.
[16] W. L. Kalb, K. Mattenberger, B. Batlogg, “Oxygen-related traps in pentacene thin films: Energetic position and implications for transistor performance”, Phys. Rev. B, vol. 78, pp. 035334, 2008.
[17] N.A. Yufa, S.L. Fronk, S.J. Rosenthal, Seth B. Darling, W.A. Lopes, S.J. Sibener, “Self-assembled monolayer-modified block copolymers for chemical surface nanopatterning”, Materials Chemistry and Physics, vol. 125, pp. 382, 2011.
Chapter 4
[1] N. Ai, Y. Zhou, Y. Zheng, H. Chen, J. Wang, J. Pei, Y. Cao, “Achieving high sensitivity in single organic submicrometer ribbon based photodetector through surface engineering”, Org. Electronics, vol. 14, pp. 1103–1108, 2013.
[2] A. E. Amrani, B. Lucasb, B. Ratier, " The effect of the active layer thickness on the performance of pentacene-based phototransistors", Synth. Metals, vol. 161, pp. 2566, 2012.
[3] P. M. Hansen, V. K. Bhatia, N. Harrit, L. Oddershede, " Expanding the Optical Trapping Range of Gold Nanoparticles", Nano Lett., vol. 5, pp. 1937, 2005.
[4] L. Bosanac, T. Aabo, P. M. Bendix, L. B. Oddershede, " Ef?cient Optical Trapping and Visualization of Silver Nanoparticles", Nano Lett., vol. 8, pp. 1486, 2008.
[5] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, F. H. L. Koppens, " Hybrid graphene–quantum dot phototransistors with ultrahigh gain", Nat. Nanotechnology, vol. 7, pp.363, 2012.
[6] M. S. Tame, K. R.McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, M. S. Kim, " Quantum plasmonics", Nat. Phys., vol 9, pp. 329, 2013.
[7] X. Yang, W. Liu, M. Xiong, Y. Zhang, T. Liang, J. Yang, M. Xu, J. Ye, H. Chen, "Au nanoparticles on ultrathin MoS2 sheet for plasmonic organic solar cells", J. Mater. Chem. A, vol. 2, pp. 14798, 2014.
[8] J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, W. Lu, " Surface Plasmon-Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays", small, vol. 11, pp. 2392, 2015.
[9] S. H. Yuan, Z. W. Pei, H. C. Lai, C. H. Chen, P. W. Li, Y. J. Chan, " Au Nanoparticle Light Scattering Enhanced Responsivity in Pentacene Phototransistor for Deep-UV Light Detection", Electron Device Lett., vol. 36, pp. 1186, 2015.
[10] Y. Zhang, H. Li, L. Wang, H. Wang, X. Xie, S.L. Zhang, R. Liu, Z.J. Qiu, “Photothermoelectric and photovoltaic effects both present in MoS2”, sci. report, vol. 5, pp. 7938, 2015.
[11] R. Kolesov, B. Grotz, G. Balasubramanian, R. J. Stöhr, A. A. L. Nicolet, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Wave–particle duality of single surface plasmon polaritons”, nat. phys., vol. 5, pp. 470, 2009.
[12] S. K. Cushing, N. Wu, “Progress and Perspectives of Plasmon-Enhanced Solar Energy Conversion”, J. Phys. Chem. Lett., vol. 7, pp. 666–675, 2016.
[13] Richard D. Yang, T. Gredig, Corneliu N. Colesniuc, Jeongwon Park, Ivan K. Schuller, William C. Trogler, and Andrew C. Kummel, “”, Appl. Phys. Lett., vol. 90, pp. 263506, 2007.
[14] S.C. Chen, K.H. Wu, J.-X. Li, A. Yabushita, S.H. Tang, C. W. Luo, J.Y. Juang, H.C.Kuo, Y.L. Chueh, “n-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy”, Sci Rep., vol. 5, pp. 18354, 2015.
[15] J. T. Mabeck, G. G. Malliaras, “Chemical and biological sensors based on organic thin film transistors”, Anal Bioanal Chem, vol. 384, pp. 343, 2006.
[16] H. J. Queisser and D. E. Theodorou, “Decay kinetics of persistent photoconductivity in semiconductors”, Phys. Rev. B, vol. 33, pp. 4027, 1986.
[17] S. Dhara1 and P. Giri, "Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires", Nanoscale Research Letters, vol.6, pp. 504, 2011.
Chapter 5
[1] C. J. Chiu, S. S. Shih, W.-Y. Weng, S.-J. Chang, Z. D. Hung, and T.-Y. Tsai, “Deep UV Ta2O5/zinc-indium-tin-oxide thin film phototransistor,” IEEE Photon. Technol. Lett., vol. 24, no. 12, pp. 1018–1020, Jun. 15, 2012.
[2] N. Ai, Y. Zheng, H. Chen, J. Wang, J. Pei, and Y. Cao, “Achieving high sensitivity in single organic submicrometer ribbon based photodetector through surface engineering,” Organic Electron., vol. 14, no. 4, pp. 1103–1108, 2013.
[3] B. Lucas, T. Trigaud, and C. Videlot-Ackermann, “Organic transistors and phototransistors based on small molecules,” Polym. Int., vol. 61, no. 3, pp. 374–389, 2012.
[4] [4] X. Liu, L. Tavares, A. Osadnik, J. L. Lausen, J. Kongsted, A. Lützen, H.-G. Rubahna, and J. Kjelstrup-Hansen, “Low-voltage organic phototransistors based on naphthyl end-capped oligothiophene nanofibers,” Organic Electron., vol. 15, no. 6, pp. 1273–1281, 2014.
[5] J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, “Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays,” Small, vol. 11, no. 20, pp. 2392–2398, 2015.
[6] M. S. Tame, K. R. McEnery, ¸ S. K. Özdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nature Phys., vol. 9, pp. 329–340, Jun. 2013.
[7] P. L. Truong, X. Ma, and S. J. Sim, “Resonant Rayleigh light scattering of single Au nanoparticles with different sizes and shapes,” Nanoscale, vol. 6, pp. 2307–2315, Dec. 2014.
[8] J. Lin, H. Li, H. Zhang, and W. Chen, “Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor,” Appl. Phys. Lett., vol. 102, no. 20, p. 203109, 2013.
[9] S. H. Yuan, Z. Pei, H. C. Lai, P. W. Li, and Y. J. Chan, “Pentacene phototransistor with gate voltage independent responsivity and sensitivity by small silver nanoparticles decoration,” Organic Electron., vol. 27, pp. 7–11, Dec. 2015.
[10] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, “Hybrid graphene–quantum dot phototransistors with ultrahigh gain,” Nature Nanotechnol., vol. 7, pp. 363–368, May 2012.
[11] B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett., vol. 84, p. 4721, May 2000.
[12] R. Zakaria, W. K. Lin, and C. C. Lim, “Plasmonic enhancement of gold nanoparticles in poly(3-hexylthiophene) organic phototransistor,” Appl. Phys. Exp., vol. 5, p. 082002, Jul. 2012.
[13] Z. Pei, H.-C. Lai, J.-Y. Wang, W.-H. Chiang, and C.-H. Chen, “Highresponsivity and high-sensitivity graphene dots/a-IGZO thin-film phototransistor,” IEEE Electron Device Lett., vol. 36, no. 1, pp. 44–46, Jan. 2015.
Chapter 6
[1] N. Ai, Y. Zhou, Y. Zheng, H. Chen, J. Wang, J. Pei, Y. Cao, “Achieving high sensitivity in single organic submicrometer ribbon based photodetector through surface engineering ”, Org. Electron., vol. 14, pp. 1103, 2013.
[2] M.R.E. Rad, N.P. Papadopoulos, M. Bauza, A. Nathan, W.S. Wong, “Blue-Light-Sensitive Phototransistor for Indirect X-Ray Image Sensors”, IEEE Electron Device Lett., vol. 33, pp.567, 2012.
[3] Y.Y. Noh, D.Y. Kim, K. Yase, “Influence of the Dielectric PMMA Layer on the Detectivity of Pentacene-Based Photodetector With Field-Effect Transistor Configuration in Visible Region”, J. Appl., vol. 98, pp. 074505, 2005.
[4] B. Gunduz, O.A.A. Hartomy, S.A.F.A. Said, A.A. Ghamdi, F. Yakuphanoglu, “Controlling of photoresponse properties of pentacene thin film phototransistors by dielectric layer thickness and channel widths”, Synth. Met. vol. 179, pp. 94, 2013.
[5] Y. Hu, G. Dong, C. Liu, L. Wang, Y. Qiu, “Dependency of organic phototransistor properties on the dielectric layers”, Appl. Phys. Lett. Vol. 89, pp. 072108, 2006.
[6] H.W. Zan, S.C. Kao, “New Organic Phototransistor With Bias-Modulated Photosensitivity and Bias-Enhanced Memory Effect”, IEEE Electron Device Lett. Vol. 30, pp. 721, 2009.
[7] Y.W. Chang, Y.T. Tai, Y.T. Huang, “A Phototransistor-Based High-Sensitivity Biosensing System Using 650-nm Light”, IEEE Sens. J. vol. 9, pp. 673, 2009.
[8] S. Lee, S.E. Ahn, Y. Jeon, J.H. Ahn, I. Song, S. Jeon, D.J. Yun, J. Kim, H. Choi, U. Chung, J. Park, “Impact of transparent electrode on photoresponse of ZnO-based phototransistor”, Appl. Phys. Lett. Vol. 103, pp. 251111, 2013.
[9] H.A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices”, Nat. Mater. vol. 9, pp. 205, 2010.
[10] P.M. Hansen, V.K. Bhatia, N. Harrit, L. Oddershede, “Expanding the Optical Trapping Range of Gold Nanoparticles”, Nano Lett. vol. 5, pp.1937, 2005.
[11] J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, W. Lu, “Surface Plasmon‐Enhanced Photodetection in Few Layer MoS2 Phototransistors with Au Nanostructure Arrays”, Small, vol. 11, pp. 2392, 2015.
[12] F.W. Vance, B.I. Lemon, J.T. Hupp, “Enormous Hyper-Rayleigh Scattering from Nanocrystalline Gold Particle Suspensions”, J. Phys. Chem. B, vol. 102, pp. 10091, 1998.
[13] A. Hirohata, Y.B. Xu, C.M. Guertler, “Spin-polarized electron transport in ferromagnet/semiconductor hybrid structures induced by photon excitation”, J.A.C. Bland, Phy. Rev. B, vol. 63, pp. 104425, 2001. |