博碩士論文 103522104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.145.23.123
姓名 蔡明倫(Ming-Lun Tsai)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 雷射都普勒血流原型機之驗證與校正
(Verification and Calibration of Laser Doppler Flowmetry(LDF) Prototype)
相關論文
★ 基於虹膜色彩空間的極端學習機的多類型頭痛分類★ 以多分數加權融合方式進行虹膜影像品質檢定
★ 基於深度學習之工業用智慧型機器視覺系統:以文字定位與辨識為例★ 基於深度學習的即時血壓估測演算法
★ 基於深度學習之工業用智慧型機器視覺系統:以焊點品質檢測為例★ 基於pix2pix深度學習模型之條件式虹膜影像生成架構
★ 以核方法化的相關濾波器之物件追蹤方法 實作眼動儀系統★ 以生成對抗式網路產生特定目的影像—以虹膜影像為例
★ 一種基於Faster R-CNN的快速虹膜切割演算法★ 運用深度學習、支持向量機及教導學習型最佳化分類糖尿病視網膜病變症狀
★ 應用卷積神經網路的虹膜遮罩預估★ Collaborative Drama-based EFL Learning with Mobile Technology Support in Familiar Context
★ 可用於自動訓練深度學習網路的網頁服務★ 基於深度學習方法之高精確度瞳孔放大片偵測演算法
★ 基於CNN方法之真假人臉識別模型★ 深度學習基礎模型與自監督學習
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來健康問題受到世界許多研究人員的重視,非侵入式的測量方法也開
始被應用於健康偵測上。雷射都普勒血流儀 (Laser Doppler flowmetry, LDF)
其原理是利用都普勒效應 (Doppler effect),被運用於測量組織微循環血流
流速的技術。 LDF 是一種非侵入式的測量裝置,許多研究人員利用 LDF 做
醫學上的研究,發現微循環與身體狀況息息相關,所以 LDF 適合應用於健
康偵測上的領域,但 LDF 機器成本昂貴,且取得不易,導致相關應用並不
普及,本論文延續前人的研究成果,以市面上可購買的電子材料建構一台
實際可用的 LDF 原型機,並且更進一步,設計一套精準的數學迴歸分析模
型,用來校正原型機所測量到的信號特徵,希冀其能夠與商用 LDF 機器所
量到的特徵完全一致。
關於信號特徵之驗證與校正,在本論文中,我們以食指中心作為信號
量測點,將商用機與原型機之血流訊號分別在信號層面與特徵層面做詳細
的比對與分析,以期建立模型並修正原型機的誤差。實驗分析結果:在原
始訊號上商用機與原型機波形沒有關聯性,藉由 ECG(心電圖) 切割後,可
以發現波形的相關性,其原因可能因為不是同時測量,微循環訊號可能有
差距,在平均整體結果後,可以看出手指微循環的整體趨勢。而在生理特
徵上,在未校正前相關性約在 0.7 上下,可以解釋兩者存在相關性,但有
訊號上的誤差,在由校正演算法一校正後,結果發現兩者特徵的相關性開
始往正相關 1.0 逼近,進一步使用演算法二校正後,結果顯示,最好的結
果已經可以逼近於 0.9999,已經趨近於完全正相關。最後整體評估結果顯
示,本論文所提出的方法,可以驗證 LDF 原型機的正確性,並可以在校正
後得到與商用機極高的相關性。
在本論文的研究成果可以幫助 LDF 原型機進入商用化的階段。由於
LDF 原型機的成本價格只有五萬元左右,在大規模生產後預估成本可以進
一步下降。此價格與目前市面上 LDF 的商用機相比具有巨大的競爭優勢,
經由本論文的迴歸模型校正之後,所有基於 LDF 商用機所設計出來的應用
場合,都可以直接套用在本論文所提出的 LDF 原型機。故此,本論文的研
究成果,可以大幅降低應用 LDF 的成本,加速其大規模的普及性應用於各
大醫療院所、小診所、健身中心等等。另外一個具有未來性的應用為穿戴
式裝置。本論文所設計的 LDF 原型機,可以用積體電路的方式,縮小其尺
寸成為單一 IC。若能順利實作成功,將來可以將此 LDF IC 內嵌到穿戴式
裝置上,例如:智慧手錶、智慧眼鏡、智慧衣、智慧褲等等。如此將能使
得 LDF 的應用更加普及,並且對行動照護、遠端醫療等高齡化社會所關注
的主題產生正面的貢獻。
摘要(英) In recent years, many researchers have paid attention to health problem in the
world. Non-invasive measurement methods were applied to detect health prob
lems. Laser Doppler flowmetry (LDF), a non-invasive method, is used to measure
red blood cells in a tissue. Researchers used LDF to do research in medicine,
and they found that the microcirculation and health condition are closely related.
Therefore, LDF is very applicable to healthcare. However, the commercial LDF
machines are very expensive and hard to obtain, which lead to very few relevant
application and popularization. In this thesis, continuing previous researches, a
LDF Prototype was built by electronic materials which can be purchased com
mercially; Further, we design an accurate mathematical regression analysis model
to calibrate feature of LDF prototype, and we hope to match with business LDF
feature.
On verification and calibration of the LDF signal feature, we compared the
data obtained by business LDF model and LDF prototype to establish a model
for calibrating error. We took the center of forefinger as the measure point and
measured the signal layer and feature layer. The result of the experiment showed
that before calibration, the correlation coefficient of physiological feature is about
0.7, and after we used our Regression Model to calibrate physiological feature, the
correlation coefficient reached nearly 0.9999, which was close to a perfect positive
correlation. The overall evaluation results showed that the proposed method can
verify and insure the correctness of the LDF prototype. Also, LDF prototype can
obtain high correlation with business LDF after calibration.

The results of this thesis that can help LDF prototype into the commercial
ization stage. Since the LDF prototype only cost about fifty thousand NTD, and
the estimated cost can be further reduced after the mass production. This price is
highly competitive comparing to business LDF. Through regression model to cal
ibrate it in this thesis, the applications of all business LDF can be directly applied
in the LDF prototype. Therefore, the result of this thesis, the LDF prototype can
significantly reduce the cost, and promote popularization to use in medical insti
tutions, fitness centers, etc. In addition, the application on the wearable device is
also promising. The LDF prototype can be built into integrated circuits that can
reduce the size to a single IC. If it is successfully implemented, the LDF prototype
IC can be plugged in wearable device. For instance, smart glasses, smart watch,
smart clothing and smart pants, etc. The LDF application can be more popular
ized, and it has a positive contribution to the action care, remote medical, aging
society.
關鍵字(中) ★ 雷射都普勒 關鍵字(英) ★ LDF
論文目次 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
致謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
一 、 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-1 前言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1-2 研究目的 . . . . . . . . . . . . . . . . . . . . . . . . . 2
1-3 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . 2
1-4 論文架構 . . . . . . . . . . . . . . . . . . . . . . . . . 4
二 、 材料與方法 . . . . . . . . . . . . . . . . . . . . . . . . 5
2-1 商用機:moorVMS-LDF™ . . . . . . . . . . . . . . . . 5
2-2 原型機: 微循環量測儀 Prototype . . . . . . . . . . . . 5
2-2-1 光源模組 . . . . . . . . . . . . . . . . . . . . . . . . . 6
2-2-2 探頭 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2-2-3 前置電路模組 . . . . . . . . . . . . . . . . . . . . . . 8
2-2-4 訊號擷取與電源模組 . . . . . . . . . . . . . . . . . . . 8
三 、 研究方法 . . . . . . . . . . . . . . . . . . . . . . . . . 10
3-1 實驗設計一 . . . . . . . . . . . . . . . . . . . . . . . . 10
3-1-1 實驗對象 . . . . . . . . . . . . . . . . . . . . . . . . . 10
3-1-2 實驗流程 . . . . . . . . . . . . . . . . . . . . . . . . . 11
3-2 實驗設計二 . . . . . . . . . . . . . . . . . . . . . . . . 13
3-2-1 實驗對象 . . . . . . . . . . . . . . . . . . . . . . . . . 13
3-2-2 實驗流程 . . . . . . . . . . . . . . . . . . . . . . . . . 13
3-3 演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3-3-1 原始訊號正規化 . . . . . . . . . . . . . . . . . . . . . 14
3-3-2 特徵擷取 . . . . . . . . . . . . . . . . . . . . . . . . . 16
3-3-3 原型機之校正 . . . . . . . . . . . . . . . . . . . . . . 17
3-4 軟體驗證 . . . . . . . . . . . . . . . . . . . . . . . . . 20
3-4-1 軟體介面 . . . . . . . . . . . . . . . . . . . . . . . . . 20
3-4-2 驗證資料擷取正確性 . . . . . . . . . . . . . . . . . . . 23
3-4-3 程式功能 Methods 介紹 . . . . . . . . . . . . . . . . . 23
四 、 實驗結果 . . . . . . . . . . . . . . . . . . . . . . . . . 26
4-1 資料庫 . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4-2 LDF 訊號正規化結果 . . . . . . . . . . . . . . . . . . 27
4-3 LDF 基礎校正結果 . . . . . . . . . . . . . . . . . . . . 30
4-4 LDF 進階校正結果 . . . . . . . . . . . . . . . . . . . . 34
4-5 商用機連續測量之誤差結果 . . . . . . . . . . . . . . . 38
4-6 驗證暨校正流程 . . . . . . . . . . . . . . . . . . . . . 40
五 、 結論與未來展望 . . . . . . . . . . . . . . . . . . . . . 44
5-1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5-2 未來研究方向 . . . . . . . . . . . . . . . . . . . . . . 45
索引 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
參考文獻 [1] “行政院勞動部 (mnistry of labor,taiwan),” http://www.mol.gov.tw/.
[2] A. V. J. Challoner, “Photoelectric plethysmography for estimating cutaneous
blood flow,” 1979.
[3] R. Campos, E. Figueiras, L. F. R. Ferreira, and A. Humeau-Heurtier, “Spec
tral analysis of laser doppler flowmetry signals,” in Bioengineering (EN
BENG), 2012 IEEE 2nd Portuguese Meeting in, Feb 2012, pp. 1–6.
[4] L. M. Rodrigues, P. C. Pinto, and J. W. Fluhr, “In vivo assessment of periph
eral vascular function by tcpo2 and skin blood flow modelling,” Experimental
Dermatology, vol. 21, pp. 38–42, 2011.
[5] P. T. Chao, M. Y. Jan, H. Hsiu, T. L. Hsu, W. K. Wang, and Y. Y. Lin Wang,
“Evaluating microcirculation by pulsatile laser doppler signal,” physics in
Medicine and Biology, vol. 51, pp. 845, 2006.
[6] E. Figueiras, R. Campos, S. Semedo, R. Oliveira, L.F. Requicha Ferreira, and
A. Humeau-Heurtier, “A new laser doppler flowmeter prototype for depth
dependent monitoring of skin microcirculation,” Review of Scientific Instru
ments, vol. 83, no. 3, pp. 034302–034302–10, Mar 2012.
[7] L. E. Drain, “The laser doppler techniques,” Chichester, Sussex, England
and New York, Wiley-Interscience, 1980. 250 p., vol. 1, 1980.
[8] J. Škrha, M. Prázný, T. Haas, J. Kvasnička, and B. Kalvodová, “Comparison
of laser-doppler flowmetry with biochemical indicators of endothelial dys
function related to early microangiopathy in type 1 diabetic patients,” Journal
of Diabetes and its Complications, vol. 15, no. 5, pp. 234 – 240, 2001.
[9] G. E. Nilsson, T. Tenland, and P. A. Oberg, “A new instrument for continu
ous measurement of tissue blood flow by light beating spectroscopy,” IEEE
Transactions on Biomedical Engineering, vol. BME-27, no. 1, pp. 12–19, Jan
1980.
[10] G. E. Nilsson, “Signal processor for laser doppler tissue flowmeters,” Medi
cal and Biological Engineering and Computing, vol. 22, no. 4, pp. 343–348,
1984.
[11] G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser doppler
flowmeter for measurement of tissue blood flow,” IEEE Transactions on
Biomedical Engineering, vol. BME-27, no. 10, pp. 597–604, Oct 1980.
[12] B. L. Petrig, C. E. Riva, and S. S. Hayreh, “Laser doppler flowmetry and optic
nerve head blood flow,” American Journal of Ophthalmology, vol. 127, no.
4, pp. 413 – 425, 1999.
[13] P. Kvandal, A. Stefanovska, M. Veber, H. D. Kvernmo, and K. A. Kirke
bøen, “Regulation of human cutaneous circulation evaluated by laser doppler
flowmetry, iontophoresis, and spectral analysis: importance of nitric oxide
and prostaglandines,” Microvascular research, vol. 65, no. 3, pp. 160— 171,
May 2003.
[14] H. Hsiu, C. L. Hsu, W. R. Chiang, P. T. Chao, T. L. Hsu, M. Y. Jan, W. K.
Wang, and Y. Y. Lin Wang, “Connection between rr-interval length and the
pulsatile microcirculatory flow,” Physiological Measurement, vol. 29, no. 2,
pp. 245, 2008.
[15] T. H. Tsai, “The analysis and applications of laser doppler perfusion signals
in health assessment,” M.S. thesis, Feng Chia University, January 2014.
[16] A. N. Obeid, N. J. Barnett, G. Dougherty, and G. Ward, “A critical review
of laser doppler flowmetry,” Journal of Medical Engineering & Technology,
vol. 14, no. 5, pp. 178–181, 1990.
[17] N. J. Barnett, G. Dougherty, and S. J. Pettinger, “Comparative study of two
laser doppler blood flowmeters,” Journal of medical engineering & technol
ogy, vol. 14, no. 6, pp. 243–249, 1990.
[18] A. N. Obeid, D. M. Boggett, N. J. Barnett, G. Dougherty, and P. Rolfe, “Depth
discrimination in laser doppler skin blood flow measurement using different
lasers,” Medical and Biological Engineering and Computing, vol. 26, no. 4,
pp. 415–424, 1988.
[19] R. J. Gush and T. A. King, “Discrimination of capillary and arterio-venular
blood flow in skin by laser doppler flowmetry,” Medical and Biological En
gineering and Computing, vol. 29, no. 4, pp. 387–392, 1991.
[20] C. H. Chen, “Implementation of measurement system for peripheral micro
circulation,” M.S. thesis, Feng Chia University, June 2014.
[21] R. Bonner and R. Nossal, “Model for laser doppler measurements of blood
flow in tissue,” Applied optics, vol. 20, no. 12, pp. 2097–2107, 1981.
[22] H. Jafarzadeh, “Laser doppler flowmetry in endodontics: a review,” Inter
national Endodontic Journal, vol. 42, no. 6, pp. 476–490, 2009.
[23] Kvernmo H. D., A. Stefanovska, M. Bracic, K. A. Kirkebøen, and
K. Kvernebo, “Spectral analysis of the laser doppler perfusion signal in hu
man skin before and after exercise,” Microvascular Research, vol. 56, no. 3,
pp. 173 – 182, 1998.
[24] A. Stefanovska, M. Bracic, and H. D. Kvernmo, “Wavelet analysis of os
cillations in the peripheral blood circulation measured by laser doppler tech
nique,” Biomedical Engineering, IEEE Transactions on, vol. 46, no. 10, pp.
1230–1239, Oct 1999.
[25] L. Rabiner, R.W. Schafer, and C.M. Rader, “The chirp z-transform algo
rithm,” Audio and Electroacoustics, IEEE Transactions on, vol. 17, no. 2,
pp. 86–92, Jun 1969.
指導教授 栗永徽(yung-hui Li) 審核日期 2016-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明