博碩士論文 103521105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:119 、訪客IP:18.225.92.95
姓名 林佳慧(Jia-Hui Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用單向化預失真、傳輸型變壓器與二元功率結合技術於C/X頻段之寬頻全積體功率放大器之研製
(Implementations on C/X-band Wideband Fully Integrated Power Amplifiers with Unilateralized Pre-distortion, Transmission Line Transformer and Binary Power Combiner Techniques)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文利用WIN 0.25-µm GaN pHEMT和tsmcTM 0.18-µm製程設計功率放大器,在設計上以操作於C/X頻段功率放大器為主要目標。應用傳輸線型變壓器和T型傳輸線型匹配達到寬頻且低損耗的特性,以及利用功率結合提升輸出功率。電路架構採用交錯耦合單向化電容來抑制閘-汲寄生電容(Cgd)所產生的米勒效應(Miller Effect),進而提升電路的傳輸增益(|S21|)和穩定度,並使用預失真技術來改善電路的線性度,來實現高增益和高線性度之寬頻功率放大器。
  各電路特性量測如下 : 應用並聯匹配網路結合功率於X頻段之寬頻功率放大器,傳輸增益為16.2 dB,飽和輸出功率為25.3 dBm,1-dB增益壓縮點輸出功率為24.8 dBm,3-dB頻寬為6.7GHz (4.6-11.3 GHz),比例頻寬為84.3 %,晶片面積為3.3 (2.075×1.587) mm2;應用傳輸線型變壓器、預失真技術與單向化技術於C/X頻段之寬頻功率放大器,傳輸增益為25.2 dB,飽和輸出功率為21.9 dBm,最佳功率附加增益為19.3 %,1-dB增益壓縮點輸出功率為17.2 dBm,1-dB增益壓縮點的功率附加增益最高可達17.2 %,小訊號增益之3-dB頻寬為 7.8 GHz (4.6-12.4 GHz),比例頻寬為91.8 %,飽和輸出功率之1-dB頻寬為5.0 GHz (5.5-10.5 GHz),晶片面積為1.95×0.81 mm2。
摘要(英) Both C-band and X-band fully integrated power amplifiers (PA) are designed in this thesis, which are fabricated in WINTM 0.25-µm GaN pHEMT and tsmcTM 0.18-µm CMOS Processes. A PA with wideband, high gain and high linearity adopted differential Guanella-type transmission-line transformers (DTLTs) and T-type transmission-line matching is designed to achieve broadband and low loss, and adopted power combine to enhance output power. The capacitive neutralization technique is adopted to mitigate the Miller effect to improve power gain and enhance stability. The linearity at back-off region is enhanced by predistortion technique. High gain and high linearity of the broadband amplifier are thus implemented.
  The measurement results of the first PA shows a power gain of 16.2 dB, a saturated output power of 25.3 dBm, an output 1-dB gain compression point of 24.8 dBm. The 3-dB bandwidth is from 4.6 to 11.3 GHz, and the fractional bandwidth is 84.3 %. The chip size is 3.3 (2.075×1.587) mm2. The second PA achieves a power gain of 25.2 dB, a saturated output power of 21.9 dBm, a maximum power added efficiency of 19.3 %, an output 1-dB gain compression point of 17.2 dBm with power added efficiency of 17.2 %. The 3-dB bandwidth is from 4.6 to 12.4 GHz. The 3-dB bandwidth of saturation power is from 5.5 to 10.5 GHz. The chip area is 1.95×0.81 mm2.
關鍵字(中) ★ 功率放大器
★ 傳輸型變壓器
★ 單向化
★ 預失真
★ 二元功率結合
關鍵字(英) ★ Power Amplifiers
★ Transmission Line Transformer
★ unilateralization
★ Pre-distortion
★ Binary Power Combiner
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 應用T型傳輸線型匹配之寬頻結合功率放大器 3
2-1 研究現況 3
2-2 應用於X頻帶之寬頻結合功率放大器 6
2-2-1 應用於X頻帶之寬頻結合功率放大器設計 6
2-2-2 電路模擬與量測結果 10
2-2-3 結果比較與討論 15
第三章 應用傳輸線型變壓器與單向化預失真功率放大器 17
3-1 磁耦合變壓器與傳輸線型變壓器 17
3-1-1 磁耦合變壓器簡介 17
3-1-2 傳輸線型變壓器簡介 21
3-2 線性化與預失真技術 24
3-2-1 電路簡介 26
3-2-2 線性度之改善 28
3-3 單向化電路與中和化電路 29
3-3-1 電路簡介 30
3-3-2 增益與穩定度之改善 34
3-4 研究現況 37
3-5 應用傳輸線型與預失真於C/X頻帶之單向化寬頻功率放大器 39
3-5-1 應用傳輸線型與預失真於C/X頻帶之單向化寬頻功率放大器設計 39
3-5-2 電路模擬與量測結果 48
3-5-3 結果比較與討論 60
第四章 結論 70
4-1 結論 70
4-2 未來方向 71
參考文獻 72
參考文獻 [1] Y.-J. E. Chen, L.-Y. Yan, and W.-C. Yeh, “An integrated wideband power amplifier for cognitive raio,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2053–2058, Oct. 2007.
[2] C. Mei-Chen, L. Ming-Fong, H. Wang, “A broadband medium power amplifier for millimeter-wave applications,” Asia-Pacific Conference Proceedings, APMC, vol. 3, Dec. 2005.
[3] B. Sewiolo, G. Fischer, and R. Weigel, “A 12-GHz High-Hfficiency Tapered Traveling-wave Power Amplifier With Novel Power Matched Cascode Gain Cells Using SiGe HBT Transistors,” IEEE Trans. Microw. Theory Tech., Vol. 57, 2009, 2329-2336.
[4] Sangho Lee, “A 6-18 GHz GaN pHEMT Power Amplifier Using Non-Foster Matching,” IEEE MTT-S Int. Microw. Symp.,May. 2015.
[5] L. Jong-Wook, L. F. Eastman, and K. J. Webb, “A Gallium–Nitride Push–Pull Microwave Power Amplifier,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 11, pp. 2243–2249, Nov. 2003.
[6] Leckey, J.G, “A 25W X-band GaN PA in SMT Package,” Microwave Integrated Circuits Conference (EuMIC), no. 7, Oct. 2014.
[7] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[8] J. R. Long, “Monolithic transformers for silicon RFIC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sep. 2000.
[9] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer–a new power-combining and impedance-transformation technique,“ IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316-331, Jan. 2002.
[10] P. Haldi, D. Chowdhury, P. Reynaert, G. Liu, and A. M. Niknejad, “A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1054-1063, May 2008.
[11] K. H. An, O. Lee, H. Kim, D. H. Lee, J. Han, K. S. Yang, Y. Kim, J. J. Chang, W. Woo, C.-H. Lee, H. Kim, and J. Laskar, “Power-combining transformer techniques for fully-integrated CMOS power amplifiers,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1064-1075, May 2008.
[12] J. Kim, W. Kim, H. Jeon, Y. Y. Huang, Y. Yoon, H. Kim, C. H. Lee, K.T. Kornegay, “A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer, ” IEEE J. Solid-State Circuits, of , vol.47, no.3, pp.599-614, Mar. 2012.
[13] G. Guanella, “New method of impedance matching in radio-frequency circuits,” Brown-Boveri Rev., vol. 31, pp. 327-329, Sep. 1944.
[14] C. L. Ruthroff, “Some broadband transformers,” Proc. IRE, vol. 47, pp. 1337-1342, Aug. 1959.
[15] H.-K. Chiou, H.-Y. Chung, “2.5-7 GHz single balanced mixer with integrated ruthroff-type balun in 0.18 μm CMOS technology, ” Electronics Letters , vol.49, no.7, pp.474-475, Mar. 28 2013
[16] J.-H. Tsai, C.-H. Wu, H.-Y. Yang, and T.-W. Huang “A 60 GHz CMOS power amplifier with built-in pre-distortion linearizer,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 676–678, Dec. 2011.
[17] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang “Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487–2496, Jun. 2006.
[18] C. C. Cheng, “Neutralization and unilateralization, ” Circuit Theory, IRE Transactions on, vol.2, no.2, pp.138-145, Jun. 1955
[19] C. Lu, A.-V.H. Pham, M. Shaw, C. Saint, ”Linearization of CMOS broadband power amplifiers through combined multigated transistors and capacitance compensation,” IEEE Trans. Microw. Theory Tech., vol.55, no.11, pp.2320-2328, Nov. 2007
[20] P.-S. Chi, Z.-M. Tsai, J.-L. Kuo, K.-Y. Lin, and H. Wang, “An X-band, 23.8-dBm fully integrated power amplifier with 25.8% PAE in 0.18-μm CMOS technology,” 40th European Microwave Conference (EuMC), Paris, France, vol. 28-30, pp.1678-1681, Sep. 2010
[21] P.-C. Huang, K.-Y. Lin and H. Wang, “A 4–17 GHz Darlington cascode broadband medium power amplifier in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 43–45, Jan. 2010.
[22] H. Wang, C. Sideris, and A. Hajimiri, “A CMOS broadband power amplifier with a transformer-based high-order output matching network,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec. 2010.
[23] B.-H. Ku, S.-H. Back, and S. Hong, “A wideband transformer-coupld CMOS power amplifier for X-band multifunction chip,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2709-2722, Dec 2010.
[24] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M.-T. Yang, P. Schvan, and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio, ” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May 2007.
[25] C.-H. Lin and H.-Y. Chang, “A broadband injection-locking class-E power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3232–3242, Oct. 2012
[26] C.-W. Kuo; H.-K. Chiou; H.-Y. Chung, “An 18 to 33 GHz fully-integrated Darlington power amplifier with Guanella-type transmission-line transformers in 0.18 µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol.23, no.12, pp.668-670, Dec. 2013
[27] B. Kim, J. Moon, I. Kim, “Efficiently amplified, ” IEEE Microwave Magazine, vol.11, no.5, pp.87-100, Aug. 2010
[28] S. Jin, B. Park, K. Moon, M. Kwon, B. Kim, “Linearization of CMOS cascode power amplifiers through adaptive bias control, ” IEEE Trans. Microw. Theory Tech., vol.61, no.12, pp.4534-4543, Dec. 2013
[29] IEEE Std 802.11a-1999, IEEE Standard 802.11, 2013.
[30] Y. S. Ng, L. L. Kan Leung and K. N. Leung, “A 3-GHz Fully-Integrated CMOS Class-AB Power Amplifier,” IEEE International Midwest Symposium on Circuits and Systems, vol. 52,no. 2,pp. 995-998, Aug. 2009.
[31] J. Kang, A. Hajimiri and Bμmman Kim, “A Single-Chip Linear CMOS Power Amplifier for 2.4 GHz WLAN”, IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 761-769, Feb. 2006.
[32] G. S. Dow, “Low DC Current 2.4-2.5 GHz and 4.9-6.0 GHz Linear Power Amplifier Modules for IEEE802.11 a/b/g Applications,” Radio Frequency Integrated Circuits Symposium, vol. 10,no. 6,pp. 75-78,Oct. 2004.
[33] B. W. , V. A. , S. W. , K. M. , S. A. , K. K., “ A 4.8-6 GHz IEEE 802.11a WLAN SiGe-bipolar power amplifier with on-chip output matching, ” European Microwave Conference (EuMC), vol.28–30, pp.1678–1681. Oct. 2005.
[34] B. Razavi, Design of analog CMOS integrated circuits, McGraw-Hill, 2001.
[35] 廖顯原,「應用於矽基功率放大器之傳輸線變壓器與穿透矽通孔之研究」,國立中央大學,博士論文,民國100年。
[36] 郭晉瑋,「應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製」,國立中央大學,碩士論文,民國102年。
[37] 陳柏勳,「應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製」,國立中央大學,碩士論文,民國103年。
[38] 林厚安,「應用傳輸線型變壓器與自適應偏壓於C/X頻段之寬頻互補式金氧半導體功率放大器研製」,國立中央大學,碩士論文,民國104年。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2016-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明