博碩士論文 103521079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:73 、訪客IP:3.145.2.95
姓名 陳世剛(Shih-Gang Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用函數連結放射狀基底函數網路於適應性步階迴歸控制六相永磁同步馬達定位驅動系統
(Adaptive Backstepping Control of Six-Phase PMSM Position Drive System using Functional Link Radial Basis Function Network)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文的研究目的是研製以數位訊號處理器為基礎之適應性步階迴歸控制,並利用函數連結放射狀基底函數網路當作不確定性觀測器,用於六相永磁同步馬達定位驅動系統。首先,本研究先推導出六相永磁同步馬達以磁場導向控制的動態模型。接著,將所設計好的步階迴歸控制系統應用於定位驅動系統控制上作馬達轉子機械位置命令的追隨。由於六相永磁同步馬達定位系統上所存在的不確定項是難以預先得到的,因此在實際應用上要設計一有效益之步階迴歸控制系統是很困難的。有鑒於此,本研究提出了適應性步階迴歸控制系統,利用適應律來估測步階迴歸控制系統中的總集不確定項。但之後為了增加六相永磁同步馬達定位驅動系統的強健及精確性,使用函數連結放射狀基底函數網路當作總集不確定項之觀測器,並以補償控制器來消除其最小重建誤差。除此之外,利用李亞普諾夫穩定性理論推導出線上學習演算法,並藉由線上訓練的方式來更新函數連結放射狀基底函數網路之參數。最後,本研究以32位元浮點運算數位訊號處理器TMS320F28335完成所提出之六相永磁同步馬達定位驅動系統,且利用實驗結果來驗證所提出之智慧型適應性步階迴歸控制系統的強健控制成效。
摘要(英) An adaptive backstepping control (ABSC) using a functional link radial
basis function network (FLRBFN) uncertainty observer is proposed in this study
to construct a high-performance six-phase permanent magnet synchronous
motor (PMSM) position servo drive system. The dynamic model of a
field-oriented six-phase PMSM position servo drive is described first. Next, a
backstepping control (BSC) system is designed for the tracking of the position
reference. Since the lumped uncertainty of the six-phase PMSM position servo
drive system is difficult to obtain in advance, it is very difficult to design an
effective BSC for practical applications. Therefore, an ABSC system is
designed using an adaptive law to estimate the required lumped uncertainty in
the BSC system. To further increase the robustness of the six-phase PMSM
position servo drive, an FLRBFN uncertainty observer is proposed to estimate
the lumped uncertainty of the position servo drive with a compensated
controller to eliminate the minimum reconstructed error. In addition, an onl ine
learning algorithm is derived using Lyapunov stability theorem to learn the
parameters of the FLRBFN online. Finally, the proposed position control
system is implemented in a 32-bit floating-point DSP, TMS320F28335. The
effectiveness and robustness of the proposed intelligent ABSC system are
verified by some experimental results.
關鍵字(中) ★ 適應性步階迴歸控制
★ 函數連結放射狀基底函數網路
★ 數位訊號處理器
★ 六相永磁同步馬達
★ 總集不確定項
★ 李亞普諾夫穩定性
關鍵字(英) ★ Adaptive backstepping control
★ functional link radial basis function network
★ digital signal processor
★ six-phase permanent magnet synchronous motor
★ lumped uncertainty
★ Lyapunov stability
論文目次 中文摘要 ................................................................................................................. I
英文摘要 ............................................................................................................... II
誌謝 ...................................................................................................................... III
目錄 ...................................................................................................................... IV
圖目錄 ................................................................................................................ VII
表目錄 .................................................................................................................. XI
第一章 緒論 ........................................................................................................ 1
1.1 研究動機與目的 ............................................................................. 1
1.2 文獻回顧 ......................................................................................... 3
1.3 論文大綱 ......................................................................................... 6
1.4 論文貢獻 ......................................................................................... 7
第二章 六相永磁同步馬達驅動系統之控制板 ................................................ 8
2.1 前言 ................................................................................................. 8
2.2 TMS320F28335 數位訊號處理器簡介 .......................................... 9
2.3 TMS320F28335 周邊功能 ............................................................ 12
2.3.1 脈波寬度調變模組 ............................................................. 12
2.3.2 中斷訊號 ............................................................................. 14
2.3.3 類比/數位轉換模組 ........................................................... 15
2.3.4 正交編碼器脈衝模組 ......................................................... 16
2.3.5 串列周邊介面模組 ............................................................. 18
2.4 以DSP 為基礎的六相永磁同步馬達控制系統 ......................... 20
2.4.1 TMS320F28335 控制卡 ...................................................... 20
2.4.2 TMS320F28335 介面板 ...................................................... 21
2.4.3 周邊電路擴充控制板 ......................................................... 22
2.5 周邊擴充控制板之電路 .............................................................. 23
2.5.1 類比/數位轉換電壓準位轉換電路 ................................... 23
2.5.2 脈波寬度調變轉換電路..................................................... 24
2.5.3 過電流保護電路 ................................................................. 25
2.5.4 數位/類比轉換電路 ........................................................... 26
2.5.5 編碼器之解碼電路 ............................................................. 27
第三章 六相永磁同步馬達驅動系統 .............................................................. 28
3.1 前言 ............................................................................................... 28
3.2 六相永磁同步馬達....................................................................... 30
3.3 六相永磁同步馬達數學動態模型 .............................................. 31
3.4 座標轉換之電壓及電磁轉矩方程式 .......................................... 32
3.5 空間向量脈波寬度調變 .............................................................. 36
3.6 六相永磁同步馬達控制架構 ...................................................... 48
第四章 六相永磁同步馬達之適應性步階迴歸控制系統 .............................. 51
4.1 前言 ............................................................................................... 51
4.2 步階迴歸控制系統....................................................................... 52
4.2.1 步階迴歸控制 .................................................................... 52
4.2.2 步階迴歸控制法則及穩定性證明 .................................... 55
4.2.3 實驗結果與討論 ................................................................ 56
4.3 適應性步階迴歸控制系統 ........................................................... 63
4.3.1 適應性步階迴歸控制 ......................................................... 63
4.3.2 適應性步階迴歸控制法則及穩定性證明 ......................... 64
4.3.3 實驗結果與討論 ................................................................. 66
第五章 六相永磁同步馬達之適應性步階迴歸控制利用函數連結放射狀基
底函數網路不確定性觀測器 .............................................................. 71
5.1 前言 ............................................................................................... 71
5.2 類神經網路與模糊邏輯 .............................................................. 72
5.3 函數連結放射狀基底函數網路 ................................................... 76
5.4 適應性步階迴歸控制利用函數連結放射狀基底函數網路不確定
性觀測器 ........................................................................................ 81
5.5 適應性步階迴歸控制利用函數連結放射狀基底函數網路不確定
性觀測器控制法則及穩定性證明 ............................................... 83
5.6 實驗結果與討論 ............................................................................ 86
第六章 結論與未來展望 .................................................................................. 91
6.1 結論 ............................................................................................... 91
6.2 未來展望 ....................................................................................... 93
參考文獻 .............................................................................................................. 94
作者簡歷 ............................................................................................................ 101
參考文獻 [1] Y. Zou and Z. Zheng, “A robust adaptive RBFNN augmenting backstepping
control approach for a model-scaled helicopter,” IEEE Trans. Control Syst.
Technol., vol. 23, no. 6, pp. 2344–2352, Nov. 2015.
[2] C. H. Lin, M. K. Lin, R. C. Wu, and S. Y. Huang, “Integral backstepping
control for a PMSM drive using adaptive FNN uncertainty observer,” in
Proc. IEEE Conf. Ind. Electron., pp. 668-673, May 2012.
[3] L. Yi and P. Yonghong, “Application of fuzzy neural network in the speed
control system of induction motor,” in Proc. IEEE Conf. Comput. Sci.
Autom. Eng., pp. 673-677, Jun. 2011.
[4] H. H. Choi, H. M. Yun, and Y. Kim, “ Implementation of evolutionary
fuzzy PID speed controller for PM synchronous motor,” IEEE Trans. Ind.
Informat., vol. 11, no. 2, pp. 540–547, Apr. 2015.
[5] Google DeepMind, ht tp: / /marketbusinessnews.com/ar t i f icial -
intelligence-stunned-experts-and-won-at-toughest-game-ever/122552
[6] Roborace, http://www.pcworld.com/article/3050716/meet-robocarthe-
dr ive r l e s s - r a c ing -car- for -the- a i -powe r ed - robor a c e .html
[7] Sony, ht tp: / /www.ki tguru.net /per ipherals/anton -shi lov/sonys -
playstation-vr-headset-will-cost-like-a-new-game-console-says-company/
[8] J. C. Salmon and B. W. Williams, “A split-wound induction motor design to
improve the reliability of PWM inverter drives,” IEEE Trans. Ind. Appl., vol.
26, no. 1, pp. 143–150, Jan./Feb. 1990.
[9] R. O. C. Lyra and T. A. Lipo, “Torque density improvement in a six-phase
induction motor with third harmonic current injection,” IEEE Trans. Ind.
Appl., vol. 38, no. 5, pp. 1351–1360, Sep./Oct. 2002.
[10] S. Karugaba and O. Ojo, “A carrier-based PWM modulation technique for
balanced and unbalanced reference voltages in multiphase voltage-source
inverters,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2102–2019, Nov./Dec.
2012.
95
[11] W. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett, and D. J. Atkinson,
“Overview of electric motor technologies used for more electric aircraft
(MEA),” IEEE Trans. Ind. Electron., vol. 59, no. 9, pp. 3523–3531, Sep.
2012.
[12] A. Cavagnino, Z. Li, A. Tenconi, and S. Vaschetto, “Integrated generator
for more electric engine: Design and testing of a scaled size prototype,”
IEEE Trans. Ind. Appl., vol. 49, no. 5, pp. 2034–2043, Sep./Oct. 2013.
[13] H. S. Che, E. Levi , M. Jones, M. J. Duran, W. P. Hew, and N. A. Rahim,
“Operation of a six-Phase induction machine using series-connected
machine-side converters,” IEEE Trans. Ind. Electron.,vol. 61, no. 1, pp.
164–176, Jan. 2014.
[14] E. Levi, “Multiphase electric machines for variable-speed applications,”
IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1893–1909, May 2008.
[15] J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing:
A Computational Approach to Learning and Machine Intelligence.
Englewood Cliffs, NJ: Prentice-Hall, 1997.
[16] F. J. Lin, L. T. Teng, C. Y. Chen, and Y. C. Hung, “FPGA-based adaptive
backstepping control system using RBFN for linear induction motor
drive,” IET Electr. Power Appl., vol. 2, no. 6, pp. 325-340, Nov. 2008.
[17] C. N. Huang and A. Chung, “An intelligent design for a PID controller for
nonlinear systems,” Asian J. Control, vol. 18, no. 1, pp. 1–9, Mar. 2016.
[18] L. Ciabattoni, M. L. Corradini, M. Grisostomi, G. Ippoliti, S. Longhi and
G. Orlando, “A discrete-time VS controller based on RBF neural networks
for PMSM drives,” Asian J. Control, vol. 16, no. 2, pp. 396–408, Mar.
2014.
[19] J. C. Patra and R. N. Pal, “A functional link artificial neural network for
adaptive channel equalization,” Signal Processing, vol. 43, pp. 181-195,
May 1995.
[20] K. A. Toh and W. Y. Yau, “Fingerprint and speaker verification decisions
96
fusion using a functional link network,” IEEE Trans. Syst., Man, and
Cybern. C, Appl. Rev., vol. 35, no. 3, pp. 357-370, Aug. 2005.
[21] F. J. Lin, P. H. Chou, Y. C. Hung, and W. M. Wang, “Field-programmable
gate array-based functional link radial basis function network control for
permanent magnet linear synchronous motor servo drive system,” IET
Electr. Power Appl., vol. 4, no. 5, pp. 357-372, May 2010.
[22] D. Zhao, W. Chen, J. Wu, and J. Li, “Globally stable adaptive tracking
control for uncertain strict-feedback systems based on neural network
approximation,” Asian J. Control, vol. 18, no. 1, pp. 1–12, Mar. 2016.
[23] F. J. Lin, L. T. Teng, and C. K. Chang, “Adaptive backstepping control for
linear-induction-motor drive using FPGA,” IET Electr. Power Appl., vol.
153, no. 4, pp. 483–492, Jul. 2006.
[24] C. C. Tsai, Y. Y. Li, F. C. Tai, and C. H. Lu, “Intelligent adaptive motion
control using fuzzy basis function networks for electric unicycle,” Asian J.
Control, vol. 17, no. 3, pp. 993–156, May 2015.
[25] H. J. Shieh and K. K. Shyu, “Nonlinear sliding-mode torque control with
adaptive backstepping approach for induction motor drive,” IEEE Trans.
Ind. Electron., vol. 46, no. 2, pp. 380–389, May 1999.
[26] F. J. Lin and C. C. Lee, “Adaptive backstepping control for linear
induction motor drive to track periodic references,” IEE Proc., Electr.
Power Appl., vol. 147, no. 6, pp. 449–458, Nov. 2000.
[27] J. J. E. Slotine, and W. Li, Applied nonlinear control. Englewodd Cliffs,
NJ: Prentice-Hall, 1991.
[28] MS320F28335, TMS320F28334, TMS320F28332, TMS320F28235,
TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data
Manual, Texas Instruments, Jun. 2007.
[29] 楊凱捷,“利用遞迴式模糊類神經小腦模型網路之錯誤容忍控制六相
永磁同步馬達定位驅動系統”,碩士論文,中央大學電機系,民國一
97
百零三年。
[30] 許尚文,“六相永磁式同步電動機之設計與控制”,碩士論文,台灣
科技大學電機系,民國九十五年。
[31] 王俊超,“六相永磁式同步電動機驅動器之分析與設計”,碩士論文,
台灣科技大學電機系,民國九十四年。
[32] 吳泰廷,“六相永磁式同步電動機驅動系統之故障後控制策略”,碩
士論文,台灣科技大學電機系,民國九十八年。
[33] B. K. Bose, Modern Power Electronics and AC Drives, Prentice Hall,
Saddle River, NJ, 2002.
[34] S. J. Kim, et al., “Robust torque control of DC link voltage fluctuation for
SynRM considering inductances with magnetic saturation,” IEEE Trans.
Magn., vol. 46, no. 9, pp. 3705–3708, Jun 2010.
[35] F. J. Lin, Y. C. Hung and M. T. Tsai, “Fault-tolerant control for six-phase
PMSM drive system via intelligent complementary sliding-mode control
using TSKFNN-AMF”, IEEE Trans. Ind. Electron., vol. 60, no. 12, pp.
5747–5762, Dec. 2013.
[36] F. J. Lin, Y. C. Hung, J. C. Hwang and M. T. Tsai, “Fault-tolerant control
of a six-phase motor drive system using a Takagi–Sugeno–Kang type
fuzzy neural network with asymmetric membership function”, IEEE Trans.
Power Electron., vol. 28, no. 7, pp. 3557–3572, Jul. 2013.
[37] 劉昌煥,『交流電機控制:向量控制與直接轉矩控制原理-第四版』,
東華書局股份有限公司,2013年。
[38] P. V. Kokotovic, “The joy of feedback: Nonlinear and adaptive,” IEEE
Control. Syst. Mag., vol. 12, pp. 7–17, Jun. 1992.
[39] M. Kristic, I. Kanellakopoulis, and P. V. Kokotovic, Nonlinear and
Adaptive Control Design, New York: Wiley, 1995.
[40] C. K. Lin, L. C. Fu, T. H. Liu, and B. H. Chou, “Passivity-based adaptive
backstepping PI sliding-mode position control for synchronous reluctance
98
motor drives,” Asian Control Conf. 8th, pp. 245-250, May 2011.
[41] R. J. Wai and H. H. Chang, “Backstepping wavelet neural network control
for indirect field-oriented induction motor drive,” IEEE Trans. Neural
Netw., vol. 15, no. 2, pp. 367–82, Mar. 2004.
[42] Z. Li, C. Y. Su, G. Li, and H. Su, “Fuzzy approximation-based adaptive
backstepping control of an exoskeleton for human upper limbs,” IEEE
Trans. Fuzzy Syst., vol. 23, no. 3, pp. 555–566, Jun. 2015.
[43] C. C. Liao, C. H. Chen, Y. F. Peng, and S. C. Wu, “A combined
backstepping and wavelet neural network control approach for mechanical
system,” Asian Control Conf. (ASCC) 9th, pp. 1–6, Jun. 2013.
[44] D. Mayne, “Nonlinear and Adaptive Control Design-M. Kristic, I.
Kanellakopoulis, and P. V. Kokotovic (New York: Wiley, 1995),” IEEE
Trans. Autom. Control, vol. 41, no. 12, pp. 1849–1853, Dec.1996. (Book
Review).
[45] J. Linares-Flores, C. García-Rodríguez, H. Sira-Ramírez, and O. D.
Ramírez-Cárdenas, “Robust backstepping tracking controller for
low-speed PMSM positioning system: design, analysis, and
implementation, ” IEEE Trans. Ind. Informat., vol. 11, no. 5, pp.
1130–1141, Oct. 2015.
[46] J. A. Primbs, V. Nevistic, and J. C. Doyle, “Nonlinear optimal control: a
control Lyapunov function and receding horizon perspective,” Asian J.
Control, vol. 1, no. 1, pp. 14–24, Mar. 1999.
[47] C. C. Yang, “Robust adaptive terminal sliding mode synchronized control
for a class of non-autonomous chaotic systems,” Asian J. Control, vol. 15,
no. 6, pp. 1677–1685, Nov. 2013.
[48] 林俊良,『智慧型控制-分析與設計』,台北市,全華圖書股份有限公
司,2008年。
[49] A. Sahoo, H. Xu, and S. Jagannathan, “Adaptive neural network-based
99
event-triggered control of single-input single-output nonlinear
discrete-time systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no.
1, pp. 151–164, Jan. 2016.
[50] C. T. Lin and C. S. George Lee, Neural Fuzzy Systems. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1996.
[51] F. J. Lin and P. H. Chou, “Robust Fuzzy-neural-network sliding-mode
control for two-axis motion control system,” IEEE Trans. Ind. Electron.,
vol. 53, no. 4, pp. 1209–1225, Jun. 2006.
[52] Y. Y. Lin, J. Y. Chang, and C. T. Lin, “Identification and prediction of
dynamic systems using an interactively recurrent self-evolving fuzzy
neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 2, pp.
310–321, Feb. 2013.
[53] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems.
Addison-Wiley, 2005.
[54] 王進德,『類神經網路與模糊控制理論入門與應用』,台北市,全華科
技圖書股份有限公司,2008年。
[55] F. J. Lin, R. J. Wai, and R. Y. Duan, “Fuzzy neural networks for
identification and control of ultrasonic motor drive with LLCC resonant
technique,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 999–1011, Oct.
1999.
[56] Y. H. Pao, S. M. Phillips, and D. J. Sobajic, “Neural-net computing and
intelligent control systems,” Int. J. Control., vol. 56, no. 2, pp. 263–289,
1992.
[57] J. C. Patra and R. N. Pal, “Functional link artificial neural network-based
adaptive channel equalization of nonlinear channels with QAM signal, ”
IEEE Int. Conf. on Syst., Man, and Cybern., vol. 3, pp. 2081–2086, Oct.
1995.
[58] J. C. Patra, R. N. Pal, B. N. Chatterji, and G. Panda, “Identification of
100
nonlinear dynamic systems using functional link artificial neural
networks,” IEEE Trans. Syst., Man, and Cybern. B, Cybern., vol. 29, no.
1, Apr. 1999.
[59] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” IEEE Trans. Neural
Netw., vol. 2, no. 1, pp. 302-309, Mar. 1991.
[60] J. S. R. Jang and C. T. Sun, “Functional equivalence between radial basis
function networks and fuzzy inference systems,” IEEE Trans. Neural
Netw., vol. 4, no. 4, pp. 156-159, Mar. 1993.
[61] H. Yu, T. Xie, S. Paszczyñski, and B. M. Wilamowski, “Advantages of
radial basis function networks for dynamic system design” IEEE Trans.
Ind. Electron., vol. 58, no. 12, pp. 5438–5450, Dec. 2011.
[62] J. X. Peng, K. Li, and D. S. Huang, “A hybrid forward algorithm for RBF
neural network construction,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp.
1439–1451, Nov. 2006.
[63] P. H. Shen and F. J. Lin, “Intelligent backstepping sliding-mode control
using RBFN for two-axis motion control system,” IET Electr. Power Appl.,
vol. 152, no. 5, pp. 1321–1342, Sep. 2005.
[64] J. Tian, M. Li, F. Chen, and N. Feng, “Learning subspace-based RBFNN
using coevolutionary algorithm for complex classification tasks,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 1, pp. 47-61, Jan. 2016.
[65] F. J. Lin, L. T. Teng, P. H. Shieh, and Y. F. Li, “Intelligent controlled
wind-turbine emulator and induction-generator system using RBFN,” IET
Electr. Power Appl., vol. 153, no. 4, pp. 608–618, Jul. 2006.
[66] T. Pajchrowski, K. Zawirski, and K. Nowopolski, “Neural speed controller
trained online by means of modified RPROP algorithm,” IEEE Trans. Ind.
Informat., vol. 11, no. 2, pp. 560–568, Apr. 2015.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2016-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明