博碩士論文 965402015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.142.135.203
姓名 郭彥蔚(Yen-Wei Kuo)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 LTE/LTE-A異質網路中基於模糊理論的小區間干擾協調機制
(Fuzzy-Based Inter-Cell Interference Coordination in LTE/LTE-A Heterogeneous Networks)
相關論文
★ 無線行動隨意網路上穩定品質服務路由機制之研究★ 應用多重移動式代理人之網路管理系統
★ 應用移動式代理人之網路協同防衛系統★ 鏈路狀態資訊不確定下QoS路由之研究
★ 以訊務觀察法改善光突發交換技術之路徑建立效能★ 感測網路與競局理論應用於舒適性空調之研究
★ 以搜尋樹為基礎之無線感測網路繞徑演算法★ 基於無線感測網路之行動裝置輕型定位系統
★ 多媒體導覽玩具車★ 以Smart Floor為基礎之導覽玩具車
★ 行動社群網路服務管理系統-應用於發展遲緩兒家庭★ 具位置感知之穿戴式行動廣告系統
★ 調適性車載廣播★ 車載網路上具預警能力之車輛碰撞避免機制
★ 應用於無線車載網路上之合作式交通資訊傳播機制以改善車輛擁塞★ 智慧都市中應用車載網路以改善壅塞之調適性虛擬交通號誌
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) LTE異質網路中佈署著數種不同大小的基地台,為了提供不同的覆蓋範圍及不同的小區容量並不斷的延伸整體網路容量。在LTE異質網路中,由於使用者佈署的天性,像Femtocell這樣為數眾多且開關頻繁的小型基地台造成了嚴重的小區間干擾問題,特別是運作於CSG模式下。3GPP所提出的小區干擾協調概念可概分為功率限制和無線資源限制兩類作法。在本篇論文中我們考慮了功率、時頻及信號觀點,分別提出了基於這兩類的小區干擾協調演算法。受益於使用模糊多屬性決策,所提出的演算法具有低複雜度及高靈活性。模糊理論提供了具有低複雜度及高彈性的近似決策方法,特別是使用在現今的多參數通訊系統上,就像是LTE系統。網絡指標的多樣性有助於模糊系統做出更好的決策。
本文提出的功率限制演算法為Femtocell決定了適當的服務範圍並為頻率重用演算法像是SFR及FFR提供了區分中心區及分類UE的方法且沒有複雜的小區間溝通。本文提出的無線資源限制演算法衡量了小區覆蓋範圍與容量之間的取捨並做出適當的無線資源調度決定,為了避免在無限資源使用上的衝突。特別是,相較於傳統的基於模糊演算法,所提出的方法沒有使用固定的模糊邏輯規則和有形模糊隸屬模型。
模擬結果顯示,相較於現行的鏈路適配演算法,所提出的演算法可以提升49%的femtocell資料率及18%的macrocell資料率。此外,所提出的演算法能達到56%的上界效能及89%的上界無線資源效益。
摘要(英) The Long Term Evolution (LTE) Heterogeneous Networks (HetNet) consists of several different type of base station for providing different coverage and capacity and increasing network capacity continuously. In LTE HetNet, the mass deployment and frequently on/off of small cells, such as femtocells, causes severe inter-cell interference problem due to the nature of user deployment without X2 interface, especially in Closed Subscriber Group (CSG) mode. The concept of Inter-Cell Interference Coordination proposed by The 3rd Generation Partnership Project (3GPP) can be achieved by using power restriction or resource restriction methods. In this article, we proposed two distributed fuzzy-based Inter-Cell Interference Coordination (ICIC) algorithms based on the concept of the power restriction and resource restriction. The low complexity and high flexibility of the proposed algorithms is benefited from the fuzzy Multi-Attributes Decision Making (MADM). Fuzzy theory can provide means to make approximate decisions with low complexity and high flexibility, especially in current multi-parameters communication systems, such as LTE system, in which the diversity of network metrics can help fuzzy system to make better decision.
The proposed adaptive power restriction algorithm provides an appropriate serving range for femtocells, determining center zone and separating UEs into cell center and cell edge for frequency-reused algorithms, such as Soft Frequency Reuse (SFR) and Fractional Frequency Reuse (FFR), without complicated negotiation among cells. The proposed adaptive radio restriction algorithm weighs the trade-off between coverage and capacity by leveraging three system metrics to make an appropriate scheduling decision to avoid the conflict in radio resource used among cells. In particular, there are no fixed fuzzy logic rules and shaped fuzzy membership model compared to conventional fuzzy-based algorithms.
The simulation results show that proposed algorithms provide about 49 % data rate improvement for femtocell and about 18 % data rate improvement for macrocell compared to current link adaptation algorithm. In addition, it can achieve up to 56 % data rate and 89 % radio resource efficiency of the up bound case.
關鍵字(中) ★ 長期演進
★ 異質網絡
★ 小區間干擾協調
★ 模糊
★ 多屬性決策
關鍵字(英) ★ Long Term Evolution (LTE)
★ Heterogeneous Networks (HetNet)
★ Inter-Cell Interference Coordination (ICIC)
★ Fuzzy
★ Multi-Attributes Decision Making (MADM)
論文目次 摘要 i
Abstract ii
致謝 iv
Content v
List of Figures vii
List of Tables x
Abbreviations xi
Notations of Definitions xiv
Chapter 1 Introduction 1
Chapter 2 Related Works 11
Chapter 3 Proposed Approaches 16
3.1 Proposed Adaptive Power Restriction Approach 19
3.1.1 Indoor-Outdoor UE Clustering Algorithm 21
3.1.2 Signal Quality Estimation 24
3.2 Proposed Adaptive Resource Restriction Approach 28
3.2.1 Problem Formulation 29
3.2.2 The proposed Approach 31
Chapter 4 System Simulation Model 52
4.1 Channel Propagation and Fading Model 59
4.2 System Benchmarks and Performance Metrics 61
Chapter 5 Results and Discussions 64
Chapter 6 Conclusions and Future Works 78
6.1 Future Works 79
6.1.1 5G Network and Applications 80
References 82
Appendix 87
Raw Data of Table 7 87
Raw Data of Table 8 90
Publication List 93
參考文獻 [1] A. Prasad, O. Tirkkonen, P. Lund, O. N. C. Yilmaz, L. Dalsgaard, and C. Wijting, "Energy-Efficient Inter-Frequency Small Cell Discovery Techniques for LTE-Advanced Heterogeneous Network Deployments," IEEE Communications Magazine, vol. 51, pp. 72-81, 2013.
[2] H. Beyranvand, W. Lim, M. Maier, C. Verikoukis, and J. A. Salehi, "Backhaul-Aware User Association in FiWi Enhanced LTE-A Heterogeneous Networks," IEEE Transactions on Wireless Communications, vol. 14, pp. 2992-3003, 2015.
[3] B. Soret and K. I. Pedersen, "Centralized and Distributed Solutions for Fast Muting Adaptation in LTE-Advanced HetNets," IEEE Transactions on Vehicular Technology, vol. 64, pp. 147-158, 2015.
[4] X. Zhang, Y. Zhang, R. Yu, W. Wang, and M. Guizani, "Enhancing Spectral-Energy Efficiency for LTE-Advanced Heterogeneous Networks: A Users Social Pattern Perspective," IEEE Wireless Communications, vol. 21, pp. 10-17, 2014.
[5] D. N. Knisely, T. Yoshizawa, and F. Favichia, "Standardization of Femtocells in 3GPP," IEEE Communications Magazine, vol. 47, pp. 68-75, 2009.
[6] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term Evolution: Wiley Online Library.
[7] S. Wang, W. Guo, and T. O′Farrell, "Low Energy Indoor Network: Deployment Optimization," EURASIP Journal on Wireless Communications and Networking, vol. 2012, pp. 1-15, 2012.
[8] V. Chandrasekhar, J. G. Andrews, and A. Gatherer, "Femtocell Networks: A Survey," IEEE Communications Magazine, vol. 46, pp. 59-67, 2008.
[9] K. R. Jacobson and W. A. Krzymien, "Multi-hop Relaying and Multiple Antenna Techniques: Performance Trade-offs in Cellular Systems," EURASIP Journal on Wireless Communications and Networking, vol. 2011, pp. 1-19, 2011.
[10] Z. Bharucha, G. Auer, T. Abe, and N. Miki, "Femto-to-Macro Control Channel Interference Mitigation via Cell ID Manipulation in LTE," IEEE Vehicular Technology Conference, vol. 2011, pp. 1-6, 2011.
[11] J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. C. Reed, "Femtocells: Past, Present, and Future," IEEE Journal on Selected Areas in Communications, vol. 30, pp. 497-508, 2012.
[12] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description," TSG TS 36.300, V11.2.0, Jun 2012.
[13] W. Zheng, H. Zhang, X. Chu, and X. Wen, "Mobility Robustness Optimization in Self-Organizing LTE Femtocell Networks," EURASIP Journal on Wireless Communications and Networking, vol. 2013, pp. 1-10, 2013.
[14] A. Barbieri, A. Damnjanovic, J. Tingfang, J. Montojo, W. Yongbin, D. Malladi, et al., "LTE Femtocells: System Design and Performance Analysis," IEEE Journal on Selected Areas in Communications, vol. 30, pp. 586-594, 2012.
[15] S. Yoon and J. Cho, "Impact of Femtocell Deployment on Existing Macrocells," IEICE Transactions on Communications, vol. E95B, pp. 1730-1737, May 2012.
[16] C. S. Ping and Y. W. Chen, "Performance Analysis of Call Admission Control in SFR-Based LTE Systems," IEEE Communications Letters, vol. 16, pp. 1014-1017, 2012.
[17] E. Pateromichelakis, M. Shariat, A. ul Quddus, and R. Tafazolli, "On the Evolution of Multi-Cell Scheduling in 3GPP LTE / LTE-A," IEEE Communications Surveys & Tutorials, vol. 15, pp. 701-717, 2013.
[18] 3GPP, "Physical layer aspect for evolved Universal Terrestrial Radio Access (UTRA)," TR 25.814, V7.1.0, Oct 2006.
[19] 3GPP, "X2 Application Protocol (X2AP)," TSG TS 36.423, V11.1.0, June 2012.
[20] 3GPP, "Mobility procedures for Home Node B (HNB); Overall Description; Stage 2," TS 25.367, V13.0.0, Jan 2016.
[21] D. L. Perez, C. Xiaoli, A. V. Vasilakos, and H. Claussen, "On Distributed and Coordinated Resource Allocation for Interference Mitigation in Self-Organizing LTE Networks," IEEE/ACM Transactions on Networking, vol. 21, pp. 1145-1158, 2013.
[22] S. Deb, P. Monogioudis, J. Miernik, and J. P. Seymour, "Algorithms for Enhanced Inter-Cell Interference Coordination (eICIC) in LTE HetNets," IEEE/ACM Transactions on Networking, vol. PP, pp. 1-1, 2013.
[23] A. Ghosh, J. Zhang, and J. G. Andrews, "Fundamentals of LTE," Prentice Hall Press, Upper Saddle River, 2010.
[24] D. L. Perez, X. L. Chu, and J. Zhang, "Dynamic Downlink Frequency and Power Allocation in OFDMA Cellular Networks," IEEE Transactions on Communications, vol. 60, pp. 2904-2914, Oct 2012.
[25] Z. Y. Zhou, M. X. Dong, K. Ota, G. J. Wang, and L. T. Yang, "Energy-Efficient Resource Allocation for D2D Communications Underlaying Cloud-RAN-Based LTE-A Networks," IEEE Internet of Things Journal, vol. 3, pp. 428-438, Jun 2016.
[26] N. Lee, X. Q. Lin, J. G. Andrews, and R. W. Heath, "Power Control for D2D Underlaid Cellular Networks: Modeling, Algorithms, and Analysis," IEEE Journal on Selected Areas in Communications, vol. 33, pp. 1-13, Jan 2015.
[27] P. Rost, S. Talarico, and M. C. Valenti, "The Complexity-Rate Tradeoff of Centralized Radio Access Networks," IEEE Transactions on Wireless Communications, vol. 14, pp. 6164-6176, Nov 2015.
[28] H. Seki and F. Adachi, "Centralized Inter-Cell Interference Coordination Using Multi-Band 3D Beam-Switching in Cellular Networks," IEICE Transactions on Communications, vol. E98B, pp. 1363-1372, Jul 2015.
[29] B. Soret and K. I. Pedersen, "Centralized and Distributed Solutions for Fast Muting Adaptation in LTE-Advanced HetNets," IEEE Transactions on Vehicular Technology, vol. 64, pp. 147-158, Jan 2015.
[30] B. R. Huang, J. Y. Li, and T. Svensson, "A Utility-Based Joint Resource Allocation Approach for Multi-Service in CoMP Networks," Wireless Personal Communications, vol. 72, pp. 1633-1648, Oct 2013.
[31] C. Cox, " An Introduction to LTE: LTE, LTE-Advanced, SAE and 4G Mobile Communications," John Wiley & Sons, 2012.
[32] L. Wang, Y. Zhang, and Z. Wei, "Mobility Management Schemes at Radio Network Layer for LTE Femtocells," in Vehicular Technology Conference, vol. 2009, pp. 1-5, 2009.
[33] C. Kahraman, " Fuzzy Multi-Criteria Decision Making: Theory and Applications with Recent Developments," vol. 16, Springer Science & Business Media, 2008.
[34] 3GPP, "Self-Organizing Networks (SON); Concepts and Requirements," TSG TS 36.500, V11.1.0, Dec 2011.
[35] J. Y. Li, J. Zeng, X. Su, W. Luo, and J. Wang, "Self-Optimization of Coverage and Capacity in LTE Networks Based on Central Control and Decentralized Fuzzy Q-Learning," International Journal of Distributed Sensor Networks, vol. 2012, 2012.
[36] S. Fan, H. Tian, and C. Sengul, "Self-Optimization of Coverage and Capacity Based on A Fuzzy Neural Network with Cooperative Reinforcement Learning," EURASIP Journal on Wireless Communications and Networking, vol. 2014, pp. 1-14, 2014.
[37] 3GPP, "FDD Home eNB Radio Frequency (RF) Requirements Analysis," TSG TR 36.921, V10.0.0, Apr 2011.
[38] K. T. Cho, J. Kim, G. Jeon, B. Ryu, and N. Park, "Interference Management for LTE Femtocell System Using Power Control," IEICE Transactions on Communications, vol. E95B, pp. 1784-1792, May 2012.
[39] A. Hatoum, R. Langar, N. Aitsaadi, R. Boutaba, and G. Pujolle, "Cluster-Based Resource Management in OFDMA Femtocell Networks with QoS Guarantees," IEEE Transactions on Vehicular Technology, vol. 63, pp. 2378-2391, Jun 2014.
[40] L. Song and J. Shen, " Evolved Cellular Network Planning and Optimization for UMTS and LTE", CRC Press, 2010.
[41] H. Burchardt, S. Sinanovic, Z. Bharucha, and H. Haas, "Distributed and Autonomous Resource and Power Allocation for Wireless Networks," IEEE Transactions on Communications, vol. 61, pp. 2758-2771, Jul 2013.
[42] Global Femtocell Market 2015-2019 [Online]. Available: http://www.researchandmarkets.com/research/z5g4t3/global_femtocell
[43] 3GPP, "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer; Measurements," TSG TS 36.214 V10.1.0, Mar 2011.
[44] 3GPP, "Physical Channels and Modulation," TSG TS 36.211, V10.5.0, June 2012.
[45] Y. W. Kuo, L. D. Chou, and Y. M. Chen, "Adaptive Smart Power Control Algorithm for LTE Downlink Cross-Tier Interference Avoidance," in 11th EAI International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness (QSHINE 2015), Taipei, Taiwan, pp. 19-20, 2015.
[46] E. Dahlman, S. Parkvall, and J. Skold, " 4G: LTE/LTE-Advanced for Mobile Broadband," Academic Press, 2011.
[47] S. Berger, M. Simsek, A. Fehske, P. Zanier, I. Viering, and G. Fettweis, "Joint Downlink and Uplink Tilt-Based Self-Organization of Coverage and Capacity under Sparse System Knowledge," IEEE Transactions on Vehicular Technology, vol. PP, pp. 1-1, 2015.
[48] A. Dalal, L. Hailong, and D. P. Agrawal, "Fractional Frequency Reuse to Mitigate Interference in Self-Configuring LTE-Femtocells Network," IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS), vol. 2011, pp. 49-54, 2011.
[49] N. Khan, M. G. Martini, and D. Staehle, "QoS-Aware Composite Scheduling Using Fuzzy Proactive and Reactive Controllers," EURASIP Journal on Wireless Communications and Networking, vol. 2014, pp. 1-21, Aug 2014.
[50] S. Tzafestas, C. Chen, T. Fokuda, F. Harashima, G. Schmidt, N. Sinha, et al., "Fuzzy Logic Applications in Engineering Science," Microprocessor-Based and Intelligent Systems Engineering, vol. 29, pp. 11-30, 2006.
[51] A. Engels, M. Reyer, A. Steiger, and R. Mathar, "Min-Cut Based Partitioning for Urban LTE Cell Site Planning," IEEE Consumer Communications and Networking Conference, vol. 2013, pp. 515-520, 2013.
[52] R. Xu and D. Wunsch, "Clustering," vol. 10: John Wiley & Sons, 2008.
[53] Y.-W. Kuo and L.-D. Chou, "Power Saving Scheduling Scheme for Internet of Things over LTE/LTE-Advanced Networks," Mobile Information Systems, vol. 2015, 2015.
[54] C. Mehlführer, J. Colom Colom Ikuno, M. Šimko, S. Schwarz, M. Wrulich, and M. Rupp, "The Vienna LTE Simulators - Enabling Reproducibility in Wireless Communications Research," EURASIP Journal on Advances in Signal Processing, vol. 2011, pp. 1-14, 2011.
[55] J. C. Ikuno, S. Pendl, M. Šimko, and M. Rupp, "Accurate SINR Estimation Model for System Level Simulation of LTE Networks," vol. 2012, pp. 1471-1475, Jun 2012.
[56] 3GPP, "Radio Frequency (RF) System Scenarios," TSG TS 36.942, V11.0.0, Sep 2012.
[57] Y. S. Cho, J. Kim, W. Y. Yang, and C. G. Kang, "MIMO-OFDM Wireless communications with MATLAB," Wiley, 2010.
指導教授 周立德(Li-Der Chou) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明