博碩士論文 103521068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:13.58.145.198
姓名 黃俊諺(Huang,Chun,Yen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 開發石墨烯多孔碳電極搭配攜帶式裝置用於肌肝酸與白蛋白檢測
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用網板印刷技術並將網印碳漿添加石墨烯(Graphene)與碳酸鈣(CaCO3)進行改良,開發出石墨烯多孔網印碳電極。透過循環伏安法(CV)研究電極對赤血鹽溶液之電化學性能,結果顯示石墨烯多孔碳電極比純碳電極電流響應高出2.4倍。電化學阻抗譜(EIS)量測實驗中,獲得石墨烯多孔碳電極與純碳電極之電荷轉移電阻分別為3.93 kΩ與7.02 kΩ,降低55%,並且透過電雙層電容值計算出表面積提升1.8倍。掃描式電子顯微鏡(SEM)下,觀察到電極表面孔洞與石墨烯層狀皺褶結構使得表面積提升,證實本研究開發出改良電化學特性之電極。
  應用方面,以石墨烯多孔網印碳電極為基礎,製備出電流式肌酐酸(Creatinine)感測器與抗體式白蛋白(Albumin)感測器,用於檢測人體血液裡肌酐酸濃度與尿液裡白蛋白濃度,這兩者的濃度都是評估慢性腎臟病的重要指標。肌酐酸感測器是採用三酵素系統催化肌酐酸而增加氧化還原反應電流;純溶液實驗中,在濃度0500 μM區間能獲得具有高度決定係數(R2 = 0.994)之檢量線。並且在含有干擾物(尿酸、對乙醯氨基酚、抗壞血酸)的情況下,仍然獲得具有高度決定係數(R2 = 0.991)之檢量線,實驗結果誤差皆小於1.3%。白蛋白感測器則是利用抗原與抗體間的特異性吸附而降低電流響應;純溶液實驗中,在濃度10300 mg/L亦獲得了具有高度決定係數(R2 = 0.995)之檢量線。在含有干擾物(尿酸、葡萄糖、抗壞血酸、肌酐酸)的情況下,仍然能獲得具有高度決定係數(R2 = 0.994)之檢量線,實驗結果誤差小於2.8%。
  此外,本研究改良攜帶式恆電位儀,整合肌酐酸與白蛋白兩種檢測平台,修改使用者選單,硬體方面則新增快閃記憶體(flash memory)與電源轉換器,使攜帶式恆電位儀能儲存一百筆量測記錄,並能用市面上常見3號(AA)乾電池驅動電路。攜帶式恆電位儀連接感測器後,可進行肌肝酸或白蛋白濃度檢測,實驗結果顯示,在含有干擾物情況下分別能獲得具有高度決定係數(R2 = 0.988,R2 = 0.992)之檢量線,其結果也和大型量測儀IM6ex量測結果誤差不到1.9%,人體樣品量測中平均誤差不到4%,與醫院檢測結果平均誤差約7%,證實該方便、簡易的裝置能用於肌酐酸與白蛋白之精準檢測。
摘要(英) This study focused on the development of screen-printed graphene porous carbon electrode and portable potentiostat for detecting albumin and creatinine in clinical samples.
  Screen-printed graphene porous carbon electrode was fabricated by mixing graphene and calcium carbonate (CaCO3) in carbon paste and printed on polycarbonate (PC) substrate. Cyclic voltammetry (CV) redox peak currents for graphene porous carbon electrode were 2.4 times higher than the bare carbon electrode. Electrochemical impedance spectroscopy (EIS) analysis showed that the charge transfer resistance of the graphene porous carbon electrodes and carbon electrode was 3.93 kΩ and 7.02 kΩ respectively, incorporation of graphene with carbon paste reduced the charge transfer resistance by 55%. From the electric double-layer capacitance value, it was inferred that the surface area of graphene porous carbon electrodes increased by 1.8 times. Scanning electron microscope (SEM) images revealed that the graphene porous carbon electrode surface exhibited porous structure with great number of holes and crumpled graphene nanosheets.
  The developed screen-printed graphene porous carbon electrode sensor was employed for albumin detection in human urine and creatinine detection in human blood samples. With possible interferences, the sensor can detect albumin in the linear range from 10 to 300 mg/L with a coefficient of determination R2=0.994. In creatinine detection with interference, the calibration curve with a coefficient of determination R2=0.991 was obtained for the creatinine concentration range 0500 μM.
  Portable potentiostat was developed with creatinine and albumin detection functions. Portable potentiostat consists of friendly user menu, flash memory to store hundred records and AA battery for power supply. The reformed portable potentiostat was used to detect creatinine or albumin by connecting creatinine sensor or albumin sensor. The calibration line with high coefficient of determination (R2=0.988, R2=0.992) was obtained for creatinine detection and albumin detection. The response of the potentiostat is similar to the commercial instrument IM6ex with error less than 1.9%. Confirmed that this portable potentiostat collocation graphene porous carbon electrodes can accurate and convenient detect albumin or creatinine. The graphene-based sensor and portable potentiostat proposed herein can be used for detecting albumin and creatinine accurately and user-friendly.
關鍵字(中) ★ 電化學
★ 肌酐酸
★ 白蛋白
★ 腎臟病
★ 網印碳電極
關鍵字(英) ★ Screen printed carbon electrode
★ kidney disease
★ albumin
★ creatinine
★ Electrochemistry
論文目次 摘要………………………………………………………………………………i
Abstract…………………………………………………………………..……. iv
致謝……………………………………………………………………..….……v
目錄………………………………………………………………………..……vi
圖目錄…………………………………………………………………..………xi
表目錄…………………………………………………………………...……xvii
第一章 緒論 1
1-1腎臟病與肌酐酸和白蛋白的關係 1
1-1-1腎臟病 1
1-1-2肌酐酸 3
1-1-3人類血清白蛋白 4
1-2電化學簡介 5
1-2-1電化學量測法 5
1-2-2電化學感測器 10
1-3石墨烯簡介 11
1-3-1石墨烯 11
1-3-2石墨烯的應用 12
1-4恆電位儀 13
1-4-1恆電位儀原理 13
1-4-2攜帶式恆電位儀 14
1-5文獻回顧 15
1-5-1石墨稀特性與應用 15
1-5-2肌酐酸感測器 18
1-5-3白蛋白感測器 21
第二章 研究動機與目的 26
2-1 研究動機 26
2-2研究目的 27
第三章 實驗方法 28
3-1攜帶式恆電位儀製作 28
3-1-1攜帶式恆電位儀架構 28
3-1-2硬體 29
3-1-3程式撰寫 35
3-1-4數據輸出 36
3-2改良攜帶式恆電位儀 37
3-2-1加裝記憶體 37
3-2-2加裝電源轉換器 40
3-2-3使用者介面修改 41
3-3開發石墨烯多孔網印碳電極 43
3-3-1材料與儀器 43
3-3-2印製電極 47
3-3-3石墨烯含量最佳化實驗 49
3-3-4掃描式電子顯微鏡 49
3-3-5電子轉移速率常數 50
3-3-6電化學阻抗譜 52
3-4肌肝酸量測實驗 53
3-4-1材料與儀器 53
3-4-2肌酐酸感測器製作 56
3-4-3純溶液檢測 56
3-4-4干擾物實驗 57
3-4-5人體血液樣品量測 59
3-5白蛋白量測實驗 59
3-5-1材料與儀器 59
3-5-2白蛋白感測器製作 62
3-5-3純溶液檢測 63
3-5-4干擾物實驗 64
3-5-5人體尿液樣品量測 66
第四章 實驗結果 67
4-1攜帶式恆電位儀的實現 67
4-1-1電路實體 67
4-1-2操作介面 69
4-1-3實際量測 71
4-2石墨烯多孔網印碳電極特性分析 73
4-2-1石墨烯含量最佳化 73
4-2-2掃描式電子顯微鏡 79
4-2-3電子轉移速率常數 80
4-2-4電化學阻抗譜 84
4-3肌酐酸量測實驗結果 88
4-3-1純溶液檢測 88
4-3-2干擾物實驗 92
4-3-3人體血液樣品量測 101
4-4白蛋白量測實驗結果 106
4-4-1純溶液檢測 106
4-4-2干擾物實驗 110
4-4-3人體尿液樣品量測 121
第五章 結論 126
第六章 未來展望 128
參考文獻 ……………………………………………………………………...125
參考文獻 [1] 衛生福利部統計處. 103年死因統計結果分析. 2015; Available from: http://www.mohw.gov.tw/cht/DOS/DisplayStatisticFile.aspx?d=49775&s=1.
[2] Wen, C.P., et al., All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. The Lancet. 371(9631): p. 2173-2182.
[3] Levey, A.S. and J. Coresh, Chronic kidney disease. The Lancet. 379(9811): p. 165-180.
[4] 蔡建誠, 病理學. 2006: 華杏出版股份有限公司.
[5] Mohabbati-Kalejahi, E., et al., A review on creatinine measurement techniques. Talanta, 2012. 97: p. 1-8.
[6] Jaffe, M. Ueber den Niederschlag, welchen Pikrinsäure im normalen Harn erzeugt, und über eine neue Reaction des Kreatinins. p. 391-400. 1886; Available from: http://vlp.mpiwg-berlin.mpg.de/references?id=lit16635&page=p0391.
[7] Joris R. Delanghe, M.M.S., Creatinine determination according to Jaffe—what does it stand for? NDT Plus, 2011. 4(2): p. 83-86.
[8] Sharma, A.C., et al., A General Photonic Crystal Sensing Motif:  Creatinine in Bodily Fluids. Journal of the American Chemical Society, 2004. 126(9): p. 2971-2977.
[9] Narayanan, S. and H.D. Appleton, Creatinine: a review. Clinical Chemistry, 1980. 26(8): p. 1119-26.
[10] 洪堯民, 蛋白尿:腎臟病的表徵之一. 高雄榮總醫訊, 2000-12. 3(12).
[11] 黃清意, 賴世偉, and 林正介, 蛋白尿 與微量. 基層醫學. 26(6): p. 163-167.
[12] Fernández-Sánchez, C., C.J. McNeil, and K. Rawson, Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development. TrAC Trends in Analytical Chemistry, 2005. 24(1): p. 37-48.
[13] Harrington, D.A. and P. van den Driessche, Mechanism and equivalent circuits in electrochemical impedance spectroscopy. Electrochimica Acta, 2011. 56(23): p. 8005-8013.
[14] Instruments, G., Basics of Electrochemical Impedance Spectroscopy. Gamry Instruments Application Note.
[15] 吳浩青 and 李永舫, 電化學動力學. 2001-02-01: 科技圖書.
[16] Xu, L., et al., Dendrimer-encapsulated Pt nanoparticles/polyaniline nanofibers for glucose detection. Journal of Applied Polymer Science, 2008. 109(3): p. 1802-1807.
[17] Andrienko, D., cyclic voltammetry. 2008.
[18] Ly, S.Y., Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry. Bioelectrochemistry, 2006. 68(2): p. 227-31.
[19] Pemberton, R.M. and J.P. Hart, Electrochemical behaviour of triclosan at a screen-printed carbon electrode and its voltammetric determination in toothpaste and mouthrinse products. Analytica Chimica Acta, 1999. 390: p. 107-115.
[20] Brusciotti, F. and P. Duby, Cyclic voltammetry study of arsenic in acidic solutions. Electrochimica Acta, 2007. 52(24): p. 6644-6649.
[21] Nguyen, P.K. and S.K. Lunsford, Electrochemical response of carbon paste electrode modified with mixture of titanium dioxide/zirconium dioxide in the detection of heavy metals: lead and cadmium. Talanta, 2012. 101: p. 110-21.
[22] Forsberg G, et al., Determination of arsenic by anodic stripping voltammetry and differential pulse anodic stripping voltammetry. Analytical Chemistry, 1975. 47: p. 1586–1592.
[23] 洪偉修. 世界上最薄的材料-- 石墨烯. 2009; Available from: http://www.knsi.com.tw/KangSiNet/_Html/Teacher/KnsiPeaper/chem/0006_980047%28%E5%8C%96%E5%AD%B8%29.pdf.
[24] Nobelprize.org. The Nobel Prize in Physics 2010. 2014; Available from: http://www.nobelprize.org/nobel_prizes/physics/laureates/2010.
[25] Lee, C., et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321(5887): p. 385-388.
[26] Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320(5881): p. 1308-1308.
[27] ScienceDaily. Electrons Can Travel Over 100 Times Faster In Graphene Than In Silicon, Physicists Show. 2008; Available from: www.sciencedaily.com/releases/2008/03/080324094514.htm.
[28] Meyer, J.C., et al., Imaging and dynamics of light atoms and molecules on graphene. Nature, 2008. 454(7202): p. 319-322.
[29] Kazakova, N.s.D.O. European collaboration breakthrough in developing graphene. 2010; Available from: http://www.npl.co.uk/news/european-collaboration-breakthrough-in-developing-graphene.
[30] Wang, H.M., et al., Fabrication of graphene nanogap with crystallographically matching edges and its electron emission properties. Applied Physics Letters, 2010. 96(2): p. 023106.
[31] Chun-Yueh Huang, Y.-C.H., and Hung-Yin Lin, Design of a Portable Multi-Channel Potentiostat for Biomolecule Sensors. International Journal of Science and Engineering, 2011. 1(1): p. 1-10.
[32] Cruz, A.F., et al., A low-cost miniaturized potentiostat for point-of-care diagnosis. Biosens Bioelectron, 2014. 62: p. 249-54.
[33] Rowe, A.A., et al., CheapStat: an open-source, "do-it-yourself" potentiostat for analytical and educational applications. PLoS One, 2011. 6(9): p. e23783.
[34] 黃俊岳, 蔡., 詹姆士湯姆森, 李玫樺, 劉濱達, 林宏殷 應用分子拓印生醫智慧材料於電化學生物感測器之尿液分析. 成大研發快訊文摘, 2013. 23(9).
[35] Pandiaraj, M., et al., A cost-effective volume miniaturized and microcontroller based cytochrome c assay. Sensors and Actuators A: Physical, 2014. 220: p. 290-297.
[36] Huang, C.Y., et al., Integrated potentiostat for electrochemical sensing of urinary 3-hydroxyanthranilic acid with molecularly imprinted poly(ethylene-co-vinyl alcohol). Biosens Bioelectron, 2015. 67: p. 208-13.
[37] Huang, C.Y., et al., A portable potentiostat for the bilirubin-specific sensor prepared from molecular imprinting. Biosens Bioelectron, 2007. 22(8): p. 1694-9.
[38] Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
[39] Wang, J., et al., Comparative studies on electrochemical activity of graphene nanosheets and carbon nanotubes. Electrochemistry Communications, 2009. 11(10): p. 1892-1895.
[40] Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
[41] Higginbotham, A.L., et al., Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano, 2010. 4(4): p. 2059-2069.
[42] Martín, A., et al., Graphene nanoribbon-based electrochemical sensors on screen-printed platforms. Electrochimica Acta, 2015. 172: p. 2-6.
[43] Kim, Y.-R., et al., Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosensors and Bioelectronics, 2010. 25(10): p. 2366-2369.
[44] Fu, C., et al., Electrochemical co-reduction synthesis of graphene/Au nanocomposites in ionic liquid and their electrochemical activity. Chemical Physics Letters, 2010. 499(4–6): p. 250-253.
[45] Wu, J.-F., M.-Q. Xu, and G.-C. Zhao, Graphene-based modified electrode for the direct electron transfer of Cytochrome c and biosensing. Electrochemistry Communications, 2010. 12(1): p. 175-177.
[46] Liu, Q., et al., Electrochemical detection of dopamine in the presence of ascorbic acid using PVP/graphene modified electrodes. Talanta, 2012. 97: p. 557-562.
[47] M. Meyerhoff and G.A. Rechnitz, An activated enzyme electrode for creatinine. Analytica Chimica Acta, 1976. 85(2): p. 277-285.
[48] Alexander Benkert, et al., Development of a Creatinine ELISA and an Amperometric Antibody-Based Creatinine Sensor with a Detection Limit in the Nanomolar Range. Anal. Chem., 2000. 72: p. 916-921.
[49] Yoda, T.T.a.K., Multi-Enzyme Membrane Electrodes for Determination of Creatinine and Creatine in Serum. CLIN.CHEM., 1983. 29(1): p. 51-55.
[50] Farabee, M.J., LYMPHATIC SYSTEM AND IMMUNITY. On-Line Biology Book.
[51] Yeh-Hsing Lao, L.-C.C., Yi-Chung Chang, Chun-Wei Chi, Konan Peck Applications of Microarray in Aptamer Study. 國家實驗研究院儀器科技研究中心 科儀新知, 2009. 172: p. 95-102.
[52] Wang, L., et al., Enzyme-free signal amplification for electrochemical detection of Mycobacterium lipoarabinomannan antibody on a disposable chip. Biosens Bioelectron, 2012. 38(1): p. 421-4.
[53] Hedstrom, M., I.Y. Galaev, and B. Mattiasson, Continuous measurements of a binding reaction using a capacitive biosensor. Biosens Bioelectron, 2005. 21(1): p. 41-8.
[54] Yu, Y., et al., A novel electrochemical immunosensor for Golgi Protein 73 assay. Electrochemistry Communications, 2014. 42: p. 6-8.
[55] Lee, C.Y., et al., Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Biosens Bioelectron, 2013. 39(1): p. 133-8.
[56] Vashist, S.K., E.M. Schneider, and J.H. Luong, Rapid sandwich ELISA-based in vitro diagnostic procedure for the highly-sensitive detection of human fetuin A. Biosens Bioelectron, 2015. 67: p. 73-8.
[57] Rikhtegaran Tehrani, Z., et al., Development of an integrase-based ELISA for specific diagnosis of individuals infected with HIV. J Virol Methods, 2015. 215-216C: p. 61-66.
[58] Tsai, J.-Z., et al., Screen-printed carbon electrode-based electrochemical immunosensor for rapid detection of microalbuminuria. Biosensors and Bioelectronics, 2016. 77: p. 1175-1182.
[59] 賴信宇, 開發可攜式阻抗量測儀及其應用. 2015: 國立中央大學電機工程學系碩士論文.
[60] AVR, ATXmega32A4 datasheet, A. Corporation, Editor. 2012, Atmel. p. 4.
[61] Instruments, T., TLC2264ID datasheet, T. Instruments, Editor. 1997, Texas Instruments.
[62] Siliconix, V., DG611A datasheet, V. Siliconix, Editor. 2002, Vishay Siliconix.
[63] FT232RL datasheet, F.T.D. International, Editor. 2010, Future Technology Devices International, FTDI.
[64] ASSEMBLY, E., EA DOGM163E-A E. ASSEMBLY, Editor. 2012, ELECTRONIC ASSEMBLY.
[65] Electric, A., 4-direction with Center-push Function, A. Electric, Editor. 2003, ALPS Electric.
[66] Adesto, SPI Serial Flash Memory with Dual-I/O and Quad-I/O Support, Adesto, Editor. 2016, Adesto.
[67] Gileadi, E., 電極動力學. 1996, 徐氏基金會: 鐘廖權.
[68] Griffiths, K., et al., Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors. Nanoscale, 2014. 6(22): p. 13613-13622.
[69] Aristov, N. and A. Habekost, Cyclic Voltammetry - A Versatile Electrochemical Method Investigating Electron Transfer Processes. World Journal of Chemical Education, 2015. 3(5): p. 115-119.
[70] Yadav, S., A. Kumar, and C.S. Pundir, Amperometric creatinine biosensor based on covalently coimmobilized enzymes onto carboxylated multiwalled carbon nanotubes/polyaniline composite film. Anal Biochem, 2011. 419(2): p. 277-83.
[71] Bernd Tombach, J.S., Fritz Matzkies, Roland M. Schaefer, Gabriele C. Chemnitius, Amperometric creatinine biosensor for hemodialysis patients. Clinica Chimica Acta 312. 2001: p. 129-134.
[72] Reddy, K.K. and K.V. Gobi, Artificial molecular recognition material based biosensor for creatinine by electrochemical impedance analysis. Sensors and Actuators B: Chemical, 2013. 183: p. 356-363.
[73] Barbara H. Esteridge, A.P.R., Norma J. Walters, bara H. Esteridge, A.P.R., Norma J. Walters, Basic Medical Laboratory Techniques. Cengage Learning, 2000.
[74] Tombach, B., et al., Amperometric creatinine biosensor for hemodialysis patients. Clinica Chimica Acta, 2001. 312: p. 129-134.
[75] Edward T. Bope, R.D.K., Conn′s Current Therapy 2012. Elsevier Health Sciences, 2012.
[76] Harris, J.R., Ascorbic Acid: Biochemistry and Biochemical Cell Biology. Springer, 1996. 25.
[77] Putnam, D.F., Composition and Concentrative Properties of Human Urine. MCDONNELL DOUGLAS ASTRONAUTICS COMPANY, 1971.
[78] Omidfar, K., et al., Development of urinary albumin immunosensor based on colloidal AuNP and PVA. Biosens Bioelectron, 2011. 26(10): p. 4177-83.
[79] H, M.H.Y.Y.Y.M.O., Voltammetric behaviors of dopamine and ascorbic acid at a glassy carbon electrode anodized in 1,ω-alkenediol. Analytical sciences, 1995. 11: p. 947-952.
[80] Ramanavicius, A., Amperometric biosensor for the determination of creatine. Analytical and Bioanalytical Chemistry, 2007. 387(5): p. 1899-1906.
[81] Zinchenko, O.A., et al., Application of creatinine-sensitive biosensor for hemodialysis control. Biosens Bioelectron, 2012. 35(1): p. 466-9.
[82] 王璽傑, 平面式抗壞血酸微電極感測器之製備. 國立雲林科技大 學光電工程研究所碩士論文 2008.
[83] 林良憲, 利用奈米碳管與電化學預處理修飾網版印刷碳電極選擇性偵測尿酸之研究. 國立中山大學化研究所碩士論文 2010.
[84] 吳孟潔, 乙醯氨酚之電氧化研究. 國立屏東科技大學環境工程與科學系碩士位論文, 2011.
[85] Eggins, B., Biosensors an introduction. John Wiley & son, 1996.
[86] Cheng-Yu Lee, K.-Y.W., Hsiu-Li Su, Huan-Yi Hung, You-Zung Hsieh, Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Biosensors and Bioelectronics. 39(1): p. 133-138.
[87] Chao Xu, D.H., Liping Zeng, Shenglian Luo, A study of adsorption behavior of human serum albumin and ovalbumin on hydroxyapatite/chitosan composite. Colloids and Surfaces B: Biointerfaces, 2009. 73: p. 360-364.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明