博碩士論文 103521051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.147.42.197
姓名 陳季賢(Ji-Xian Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 磊晶成長氮化鋁銦/氮化鋁/氮化鎵異質結構於六吋矽基板與其特性分析
(Growth and Characterization of AlInN/AlN/GaN Heterostructures on 6-inch Si Substrates)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究主題為以有機金屬化學蒸氣沉積法成長高電子遷移率與低通道電阻之氮化鋁銦/氮化鋁/氮化鎵異質結構於矽基板上,並探討主導氮化鋁銦異質結構電子遷移率之散射機制。為了降低合金散射在氮化鋁銦異質結構中對電子遷移率造成的影響,本研究在氮化鋁銦/氮化鎵之間插入一層氮化鋁二元化合物作為間隔層,阻擋二維電子氣跨入氮化鋁銦位障層。本研究亦探討磊晶條件對氮化鋁銦異質結構電性的影響,在優化磊晶條件之後,試片的表面平坦度可以降低至0.738 nm,在二維電子氣濃度為2.13×1013 cm-2的情況下,載子遷移率可以提升到1360 cm2/V-s,因此成功地達成一個通道片電阻低至215 ohm/sq的氮化鋁銦高電子遷移率電晶體結構。
  此外,本研究亦製備了一系列具有不同氮化鎵披覆層厚度與位障層鋁含量的試片,其披覆層厚度與鋁含量分布分別為0 nm 到13 nm與82%到89%。實驗結果顯示,氮化鋁銦異質結構之二維電子氣濃度隨著披覆厚度減少或鋁含量增加而增加,其電子遷移率則隨著電子濃度增加而減少,而界面粗糙的結構,其電子遷移率衰退的幅度較界面平整者顯著。藉由低溫霍爾量測分析推論,具高電子濃度的試片在低溫區其電子遷移率是由界面粗糙散射機制所主導。因此,界面平整度為獲得高二維電子氣濃度氮化鋁銦高電子遷移率電晶體之關鍵要素。
摘要(英) This study aims at growing high electron mobility and low channel resistance AlInN/GaN heterostructures on Si substrates by metal-organic chemical vapor deposition, and the investigation of carrier scattering mechanisms in these heterostructures.
In order to reduce alloy scattering in AlInN/GaN high electron mobility transistors (HEMTs), a binary spacer layer, i.e. AlN, is inserted between AlInN and GaN so as to prevent electrons in GaN channel from spilling to AlInN barrier layer. By optimizing the growth conditions of AlInN HEMTs, surface roughness of 0.738 nm, electron mobility of 1,360 cm2/V-s with two dimensional electron gas (2DEG) concentration of 2.13×1013 cm-2, leading to a very low sheet resistance of 215 ohm/sq, have been achieved.
A series of AlInN HEMTs with GaN cap layer thickness and Al content in AlInN barrier layer ranging from 0 to 13 nm and 82% to 89%, respectively, have also been prepared and characterized. Hall-effect measurements show that 2DEG concentration increases with decreasing GaN cap thickness and increasing Al content in AlInN barrier layer, while electron mobility decreases with increasing 2DEG density. It is also observed that the degradation of electron mobility is more significant for the samples with a rough interface than those with a smooth one. From temperature-dependent Hall-effect measurements, it is concluded that the electron mobility of AlInN HEMTs with high 2DEG density is dominated by interface roughness scattering at low temperature. Reducing interface roughness is an essential task to achieve high 2DEG concentration AlInN HEMTs.
關鍵字(中) ★ 氮化鎵
★ 氮化鋁銦
★ 高電子遷移率電晶體
★ 有機金屬化學蒸氣沉積
關鍵字(英)
論文目次 論文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 導論 1
1.1 前言 1
1.2 研究動機 3
1.2.1 氮化鎵功率元件發展現況 3
1.2.2 氮化鋁銦/氮化鎵異質結構面臨之瓶頸 7
1.3 論文架構 9
第二章 氮化鋁銦/氮化鎵異質結構背景與磊晶結構設計 10
2.1 前言 10
2.2 氮化鋁銦/氮化鎵異質結構介紹 11
2.2.1 氮化鋁銦/氮化鎵異質結構起源 11
2.2.2 氮化鋁銦/氮化鎵異質結構極化效應 13
2.3 氮化鋁銦/氮化鎵磊晶結構設計 17
2.3.1 氮化物成長於矽基板之簡介 17
2.3.2 氮化鋁銦/氮化鎵磊晶結構與條件 21
2.4 本章總結 25
第三章 氮化鋁間隔層對氮化鋁銦/氮化鎵異質結構特性之探討 26
3.1 前言 26
3.2 有無氮化鋁間隔層之氮化鋁銦/氮化鎵異質結構特性分析 28
3.3 界面粗糙度對氮化鋁銦/氮化鎵異質結構特性影響之分析 38
3.4 氮化鋁銦/氮化鎵異質結構低溫霍爾特性分析 44
3.5 本章總結 47
第四章 磊晶結構與條件對氮化鋁銦/氮化鋁/氮化鎵異質結構特性探討 49
4.1 前言 49
4.2 披覆層厚度與位障層成分對該異質結構特性影響之探討 51
4.3 氮化鋁間隔層品質對該異質結構特性影響之探討 56
4.4 氮化鋁銦/氮化鋁/氮化鎵異質結構界面散射機制模型建立 60
4.5 界面粗糙度參數對電子遷移率之影響 67
4.6 本章總結 74
第五章 結論與未來展望 76
參考文獻 78
參考文獻 [1] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, et al., "High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate," Solid-State Electronics, vol. 50, pp. 1744-1747, Nov 2006.
[2] M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, "High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures," Applied Physics Letters, vol. 89, p. 062106, Aug 2006.
[3] M. Hiroki, N. Maeda, and T. Kobayashi, "Fabrication of an InAlN/AlGaN/AlN/GaN Heterostructure with a Flat Surface and High Electron Mobility," Applied Physics Express, vol. 1, p. 111102, Nov 2008.
[4] S. W. Kaun, E. Ahmadi, B. Mazumder, F. Wu, E. C. H. Kyle, P. G. Burke, et al., "GaN-based high-electron-mobility transistor structures with homogeneous lattice-matched InAlN barriers grown by plasma-assisted molecular beam epitaxy," Semiconductor Science and Technology, vol. 29, p. 045011, Apr 2014.
[5] F. Wu, K. H. Gao, Z. Q. Li, T. Lin, and W. Z. Zhou, "Effects of GaN interlayer on the transport properties of lattice-matched AlInN/AlN/GaN heterostructures," Journal of Applied Physics, vol. 117, p. 155701, Apr 2015.
[6] J. Xue, J. Zhang, Y. Hou, H. Zhou, J. Zhang, and Y. Hao, "Pulsed metal organic chemical vapor deposition of nearly latticed-matched InAlN/GaN/InAlN/GaN double-channel high electron mobility transistors," Applied Physics Letters, vol. 100, p. 013507, Jan 2012.
[7] Y. L. Fang, S. B. Dun, B. Liu, J. Y. Yin, B. C. Sheng, T. T. Han, et al., "High performance InAlN/GaN heterostructure and field effect transistor on sapphire substrate by MOCVD," 5th Global Symposium on Millimeter Waves, 2012.
[8] S. Zhang, M. C. Li, Z. H. Feng, B. Liu, J. Y. Yin, and L. C. Zhao, "High electron mobility and low sheet resistance in lattice-matched AlInN/AlN/GaN/AlN/GaN double-channel heterostructure," Applied Physics Letters, vol. 95, p. 212101, Nov 2009.
[9] Y. L. Fang, Z. H. Feng, J. Y. Yin, Z. R. Zhang, Y. J. Lv, S. B. Dun, et al., "Ultrathin InAlN/GaN heterostructures with high electron mobility," Physica Status Solidi B, vol. 252, pp. 1006-1010, May 2015.
[10] F. Lecourt, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, M. Eickelkamp, et al., "InAlN/GaN HEMTs on Sapphire Substrate With 2.9-W/mm Output Power Density at 18 GHz," IEEE Electron Device Letters, vol. 32, pp. 1537-1539, Nov 2011.
[11] D. S. Lee, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, "300-GHz InAlN/GaN HEMTs With InGaN Back Barrier," IEEE Electron Device Letters, vol. 32, pp. 1525-1527, Nov 2011.
[12] O. Jardel, G. Callet, J. Dufraisse, M. Piazza, N. Sarazin, E. Chartier, et al., "Electrical performances of AlInN/GaN HEMTs. A comparison with AlGaN/GaN HEMTs with similar technological process," International Journal of Microwave and Wireless Technologies, vol. 3, pp. 301-309, Jun 2011.
[13] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, et al., "Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 87, pp. 334-344, Jan 2000.
[14] H. Morkoc, R. Cingolani, and B. Gil, "Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors," Solid-State Electronics, vol. 43, pp. 1909-1927, Oct 1999.
[15] A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, et al., "Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon," Physica Status Solidi C, vol. 0, pp. 1583-1606, 2003.
[16] A. Krost, A. Dadgar, J. Blasing, A. Diez, T. Hempel, S. Petzold, et al., "Evolution of stress in GaN heteroepitaxy on AlN/Si(111): From hydrostatic compressive to biaxial tensile," Applied Physics Letters, vol. 85, pp. 3441-3443, Oct 2004.
[17] Z. Liliental-Weber and D. Cherns, "Microstructure of laterally overgrown GaN layers," Journal of Applied Physics, vol. 89, pp. 7833-7840, Jun 2001.
[18] J. Hertkorn, F. Lipski, R. Brueckner, T. Wunderer, S. B. Thapa, F. Scholz, et al., "Process optimization for the effective reduction of threading dislocations in MOVPE grown GaN using in situ deposited SiNx masks," Journal of Crystal Growth, vol. 310, pp. 4867-4870, Nov 2008.
[19] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, et al., "Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO)," Journal of Crystal Growth, vol. 221, pp. 316-326, Dec 2000.
[20] K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, et al., "Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers," Journal of Electronic Materials, vol. 35, pp. 592-598, Apr 2006.
[21] T. Kehagias, G. P. Dimitrakopulos, J. Kioseoglou, H. Kirmse, C. Giesen, M. Heuken, et al., "Indium migration paths in V-defects of InAlN grown by metal-organic vapor phase epitaxy," Applied Physics Letters, vol. 95, p. 071905, Aug 2009.
[22] S. B. Lisesivdin, S. Acar, M. Kasap, S. Ozcelik, S. Gokden, and E. Ozbay, "Scattering analysis of 2DEG carrier extracted by QMSA in undoped Al0.25Ga0.75N/GaN heterostructures," Semiconductor Science and Technology, vol. 22, pp. 543-548, May 2007.
[23] G.-Y. Lee, P.-T. Tu, and J.-I. Chyi, "Improving the off-state characteristics and dynamic on-resistance of AlInN/AlN/GaN HEMTs with a GaN cap layer," Applied Physics Express, vol. 8, p. 064102, Jun 2015.
[24] Y. Liu, S. P. Singh, Y. J. Ngoo, L. M. Kyaw, M. K. Bera, Q. Q. Lo, et al., "Low thermal budget Hf/Al/Ta ohmic contacts for InAlN/GaN-on-Si HEMTs with enhanced breakdown voltage," Journal of Vacuum Science & Technology B, vol. 32, p. 032201, May 2014.
[25] S. Tripathy, L. M. Kyaw, S. B. Dolmanan, Y. J. Ngoo, Y. Liu, M. K. Bera, et al., "InxAl1-xN/AlN/GaN High Electron Mobility Transistor Structures on 200 mm Diameter Si(111) Substrates with Au-Free Device Processing," ECS Journal of Solid State Science and Technology, vol. 3, pp. Q84-Q88, Mar 2014.
[26] Kai Cheng, S. Degroote, M. Leys, F. Medjdoub, J. Derluyn, B. Sijmus, et al., "Very low sheet resistance AlInN/GaN HEMT grown on 100 mm Si(111) by MOVPE," Physica Status Solidi C, vol. 7, pp. 1967-1969, May 2010.
[27] H. Sun, A. R. Alt, H. Benedickter, C. R. Bolognesi, E. Feltin, J.-F. Carlin, et al., "102-GHz AlInN/GaN HEMTs on Silicon With 2.5-W/mm Output Power at 10 GHz," IEEE Electron Device Letters, vol. 30, pp. 796-798, Aug 2009.
[28] S. Arulkumaran, K. Ranjan, G. I. Ng, C. M. M. Kumar, S. Vicknesh, S. B. Dolmanan, et al., "High-Frequency Microwave Noise Characteristics of InAlN/GaN High-Electron Mobility Transistors on Si (111) Substrate," IEEE Electron Device Letters, vol. 35, pp. 992-994, Oct 2014.
[29] A. Watanabe, J. J. Freedsman, R. Oda, T. Ito, and T. Egawa, "Characterization of InAlN/GaN high-electron-mobility transistors grown on Si substrate using graded layer and strain-layer superlattice," Applied Physics Express, vol. 7, p. 041002, Apr 2014.
[30] A. Dadgar, F. Schulze, J. Blasing, A. Diez, A. Krost, M. Neuburger, et al., "High-sheet-charge-carrier-density AlInN/GaN field-effect transistors on Si(111)," Applied Physics Letters, vol. 85, pp. 5400-5402, Nov 2004.
[31] H. Sun, A. R. Alt, H. Benedickter, C. R. Bolognesi, E. Feltin, J.-F. Carlin, et al., "Ultrahigh-Speed AlInN/GaN High Electron Mobility Transistors Grown on (111) High-Resistivity Silicon with F-T=143 GHz," Applied Physics Express, vol. 3, p. 094101, Sep 2010.
[32] A. Watanabe, J. J. Freedsman, Y. Urayama, D. Christy, and T. Egawa, "Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition," Journal of Applied Physics, vol. 118, p. 235705, Dec 2015.
[33] Colin Wood and D. Jena, Polarization Effects in Semiconductors. New York: Springer, 2008.
[34] D. Zanato, S. Gokden, N. Balkan, B. K. Ridley, and W. J. Schaff, "The effect of interface-roughness and dislocation scattering on low temperature mobility of 2D electron gas in GaN/AlGaN," Semiconductor Science and Technology, vol. 19, pp. 427-432, Mar 2004.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明