博碩士論文 103323110 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.145.63.136
姓名 鍾政毅(Cung-Yi Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用表面微結構沉積銀顆粒輔助製作矽奈米線之研究
(Study of assist fabricating Silicon nano wire by depositing silver particle on surface microstructure)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 矽基奈米結構具有許多優異的性質,廣泛應用半導體 矽基奈米結構具有許多優異的性質,廣泛應用半導體 矽基奈米結構具有許多優異的性質,廣泛應用半導體 矽基奈米結構具有許多優異的性質,廣泛應用半導體 矽基奈米結構具有許多優異的性質,廣泛應用半導體 矽基奈米結構具有許多優異的性質,廣泛應用半導體 矽基奈米結構具有許多優異的性質,廣泛應用半導體 矽基奈米結構具有許多優異的性質,廣泛應用半導體 矽基奈米結構具有許多優異的性質,廣泛應用半導體 矽基奈米結構具有許多優異的性質,廣泛應用半導體 矽基奈米結構具有許多優異的性質,廣泛應用半導體 、光電 、生 醫及能源領域中,因此發展製程技術扮演著關鍵的 角色而其醫及能源領域中,因此發展製程技術扮演著關鍵的 角色而其醫及能源領域中,因此發展製程技術扮演著關鍵的 角色而其醫及能源領域中,因此發展製程技術扮演著關鍵的 角色而其醫及能源領域中,因此發展製程技術扮演著關鍵的 角色而其醫及能源領域中,因此發展製程技術扮演著關鍵的 角色而其醫及能源領域中,因此發展製程技術扮演著關鍵的 角色而其醫及能源領域中,因此發展製程技術扮演著關鍵的 角色而其醫及能源領域中,因此發展製程技術扮演著關鍵的 角色而其醫及能源領域中,因此發展製程技術扮演著關鍵的 角色而其醫及能源領域中,因此發展製程技術扮演著關鍵的 角色而其矽 奈米線製備有許多的方法, 奈米線製備有許多的方法, 奈米線製備有許多的方法, 奈米線製備有許多的方法, 奈米線製備有許多的方法, 其中 最常 製備成奈米線 製備成奈米線 製備成奈米線 是使用氫氟酸與硝 是使用氫氟酸與硝 是使用氫氟酸與硝 是使用氫氟酸與硝 酸銀直接製作出奈米顆粒 酸銀直接製作出奈米顆粒 酸銀直接製作出奈米顆粒 酸銀直接製作出奈米顆粒 ,再利用金屬輔助蝕刻出 再利用金屬輔助蝕刻出 再利用金屬輔助蝕刻出 矽奈米線 。本實 驗為了探討 為了探討 利用 氫氧化鉀 氫氧化鉀 做表面處理 做表面處理 做表面處理 後,預先 形成不同尺寸 形成不同尺寸 形成不同尺寸 的金字塔 的金字塔 微結構 ,再使用硝酸銀 使用硝酸銀 、硼氫化鈉與 硼氫化鈉與 檸檬酸鈉產生出奈米銀顆粒沉積 檸檬酸鈉產生出奈米銀顆粒沉積 檸檬酸鈉產生出奈米銀顆粒沉積 檸檬酸鈉產生出奈米銀顆粒沉積 檸檬酸鈉產生出奈米銀顆粒沉積 在經過表面處理之後的矽,再利用這些 在經過表面處理之後的矽,再利用這些 在經過表面處理之後的矽,再利用這些 在經過表面處理之後的矽,再利用這些 在經過表面處理之後的矽,再利用這些 在經過表面處理之後的矽,再利用這些 在經過表面處理之後的矽,再利用這些 在經過表面處理之後的矽,再利用這些 沉積的 沉積的 銀金屬顆粒輔助化 金屬顆粒輔助化 金屬顆粒輔助化 金屬顆粒輔助化 學蝕刻出 陣列 奈米線, 奈米線, 奈米線, 奈米線, 藉由電子顯微鏡觀察矽表面的奈米結構形貌 藉由電子顯微鏡觀察矽表面的奈米結構形貌 藉由電子顯微鏡觀察矽表面的奈米結構形貌 藉由電子顯微鏡觀察矽表面的奈米結構形貌 藉由電子顯微鏡觀察矽表面的奈米結構形貌 藉由電子顯微鏡觀察矽表面的奈米結構形貌 及 影像分析等性質討論。經一系列實驗的發現,矽表面由 影像分析等性質討論。經一系列實驗的發現,矽表面由 影像分析等性質討論。經一系列實驗的發現,矽表面由 影像分析等性質討論。經一系列實驗的發現,矽表面由 影像分析等性質討論。經一系列實驗的發現,矽表面由 影像分析等性質討論。經一系列實驗的發現,矽表面由 影像分析等性質討論。經一系列實驗的發現,矽表面由 影像分析等性質討論。經一系列實驗的發現,矽表面由 影像分析等性質討論。經一系列實驗的發現,矽表面由 影像分析等性質討論。經一系列實驗的發現,矽表面由 影像分析等性質討論。經一系列實驗的發現,矽表面由 影像分析等性質討論。經一系列實驗的發現,矽表面由 氫氧化鉀 氫氧化鉀 蝕 刻過後的表面可 刻過後的表面可 沉積 較多的銀顆粒 ,而另合成較多的銀顆粒 ,而另合成較多的銀顆粒 ,而另合成較多的銀顆粒 ,而另合成較多的銀顆粒 ,而另合成較多的銀顆粒 ,而另合成粒徑 會因為 溫度 的不同 而有所的不同 而有所的不同 而有所,而藉由奈米銀顆粒的 變化可得到更細小及緻密而藉由奈米銀顆粒的 變化可得到更細小及緻密而藉由奈米銀顆粒的 變化可得到更細小及緻密而藉由奈米銀顆粒的 變化可得到更細小及緻密而藉由奈米銀顆粒的 變化可得到更細小及緻密而藉由奈米銀顆粒的 變化可得到更細小及緻密而藉由奈米銀顆粒的 變化可得到更細小及緻密而藉由奈米銀顆粒的 變化可得到更細小及緻密奈米線。
摘要(英) In recent years, silicon nanostructure has received great deal of attention from its unique surface effects. The use of silicon nanostructure has been applied to a wide variety of fields including semiconductor, optoelectronic, biological and energy field. Therefore, the fabrication technique developing silicon nanostructure becomes an intriguing topic for researchers. Preparation of silicon nanostructure has many ways. In the past, the common silicon nanostructure was prepared by using hydrofluoric acid and silver nitrate produce nano-silver particles for metal-assist chemical etching. In this experiment, we explore the use of sodium hydroxide surface treatment for silver particles formation. Next, silver nitrate, sodium tetrahydridoborate and sodium citrate produced nano silver particles, which are deposited on the surface-treated silica after reuse the nano silver particles assist chemical etching nanowires. Though electron morphology and properties of nano structure silicon surface image analysis we designed a series of experiments, firstly the silicon surface by potassium hydroxide etching can be deposited more the silver particles. Secondly synthesis of silver particles in solution at different temperatures because particle sizes vary in different temperatures. With the change of nano-silver particles, we can obtain finer and dense nanowire.
關鍵字(中) ★ 金屬輔助化學蝕刻
★ 矽奈米線
★ 金字塔微結構
關鍵字(英) ★ MACE
★ silicon nano wire
★ pyramid microstructure
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
第二章 原理與文獻回顧 3
2.1 矽奈米線陣列的製備 3
2.2 濕式化學蝕刻 4
2.2.1 非等向性濕式蝕刻之理論 6
2.2.2 非等向性濕式蝕刻的反應機制與影響因素 10
2.3 金屬輔助化學蝕刻(Metal Assisted Chemical Etching, MACE) 12
2.3.1簡介和原理 12
2.3.2矽奈米結構形成的影響 13
2.4奈米粒子合成原理 17
2.4.1奈米粒子製備方法 18
2.4.2還原奈米銀粒子 19
第三章 實驗原理與實驗步驟 20
3.1實驗材料與藥品 20
3.2 實驗器材 21
3.3 實驗分析儀器 22
3.4 實驗流程 22
3.4.1利用KOH蝕刻矽晶圓表面 23
3.4.2製備奈米銀顆粒 23
3.4.2製備奈米線 23
3.5 分析儀器介紹 24
3.5.1電子顯微鏡 24
第四章 結果與討論 28
4.1 不同溫度與KOH蝕刻形成微結構尺寸之變化 28
4.2 不同溫度下奈米銀顆粒的合成 39
4.3經KOH表面處理後銀顆粒的沉積 47
4.4銀顆粒輔助化學蝕刻製作矽奈米線 50
第五章 結論 59
第六章 參考資料 60

參考文獻 [1] X. Y. Zhang, L. D. Zhang, G. W. Meng, G. H. Li, N. Y. Jin-Phillipp, and F. Phillipp, "Synthesis of ordered single crystal silicon nanowire arrays," Advanced Materials, vol. 13, pp. 1238-1241, 2001.
[2] R. S. Wagner and W. C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth," Applied Physics Letters vol. 4, pp. 89, 1964.   Advanced Materials, vol. 13, pp. 1238-1241, 2001.
[3] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, "Nucleation and growth of Si nanowires from silicon oxide," Physical Review B, vol. 58, pp. 16024-16026, 1998.
[4] Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of semiconducting oxides," Science, vol. 291, pp. 1947-1949, 2001
[5] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, "Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism," Chemical Physics Letters, vol. 323, pp. 224-228, 2000.
[6] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, "Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism," Physica E, vol. 9, pp. 305-309, 2001.
[7] L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Gosele, and T. Y. Tan, "Silicon nanowhiskers grown on < 111 > Si substrates by molecular-beam epitaxy," Applied Physics Letters, vol. 84, pp. 4968-4970, 2004.
[8] P. Werner, N. D. Zakharov, G. Gerth, L. Schubert, and U. Gosele, "On the formation of Si nanowires by molecular beam epitaxy," International Journal of Materials Research, vol. 97, pp. 1008-1015, 2006.
[9] A. M. Morales and C. M. Lieber, "A laser ablation method for the synthesis of crystalline semiconductor nanowires," Science, vol. 279, pp. 208-211, 1998.
[10] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, "Nanoscale silicon wires synthesized using simple physical evaporation," Applied Physics Letters, vol. 72, pp. 3458-3460, 1998.

[11] T. Hanrath and B. A. Korgel, "Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals," Advanced Materials, vol. 15, pp. 437-440, 2003.
[12] P. J. Holmes (Ed.), the electrochemistry of semiconductors, Academic Press, vol. 2, pp. 170-170, 1962.
[13] I. Zuble and M. Kramkowska, "The effect of alcohol additives on etching characteristics in KOH solution", Sensors and Actuators, A, vol. 101 pp. 255-261, 101, 255, 2002.
[14] 施敏、張俊彥,半導體元件與物理與製作技術,高立圖書公司,1996.
[15] W. Ken, "Chemical etching of silicon, germanium, gallium-arsenide and gallium phosphide", RCA Review. 39, 278, 1978.
[16] P. Allongue, V. Costa-Kieling and H. Gerischer, "Etching of Silicon in NaOH Solutions", Journal of the Electrochemical Society, vol.140, pp.1009-1018, 140, 1018, 1993.
[17] I. Zuble, "Silicon anisotropic etching in alkaline solutions III: On the possibility of spatial structures forming in the course of Si (100) anisotropic etching in KOH and KOH+IPA solutions", Sensors and Actuators, A, vol.84, pp.116-125, 84, 116, 2000.
[18] I. Zuble, I. Barycka, K. Kotowska, and M. Kramkowska, "Silicon anisotropic etching in alkaline solutions IV: The effect of organic and inorganic agents on silicon anisotropic etching process", Sensors and Actuators, A, vol.87, pp.163-171, 87, 163, 2001.
[19] I. Zuble and M. Kramkowska, "The effect of isopropyl alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions", Sensors and Actuators, A, vol. 93, 183, 2001.
[20] Gregory T. A. Kovacs, Nadim I. Maluf, Kurt E. Petersen, "Bulk Micromachining of Silicon ", Proceedings of the IEEE, Vol. 86, pp.1536-1551, 1996.
[21] M. Elwenspoek, "The form of etch rate minima in wet chemical anisotropic etching of silicon", Journal of Micromechanical and Microengineering, Vol. 6, pp. 405-409, 1996.
[22] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel, "Anisotropic etching of crystalline silicon in alkaline solution-Part II. Influence of dopants", Journal of the Electrochemical Society, Vol. 137, pp. 3626-3632, 1990.
[23] D. B. Lee, "Anisotropic etching of silicon", Journal of Applied physics, Vol. 40, pp. 4569-4574, 1969.
[24] D. A. Neamen, "Semiconductor physics & devices", 2nd edition, McGraw-Hill.
[25] P. J. Jesketh, C. Ju, and S. Gowda, “Surface free energy model of silicon anisotropic etching “Journal of the Electrochemical Society, vol. 140, pp.1080-1084, 1993.
[26] D. L. Kendall, “On etching very narrow grooves in silicon”, Applied Physics Letters, Vol. 26, pp. 195-198, 1975.
[27] X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Applied Physics Letters, vol. 77, pp. 2572-2574, 2000.
[28] S. Chattopadhyay, X. L. Li, and P. W. Bohn, "In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching," Journal of Applied Physics, vol. 91, pp. 6134-6140, 2002.
[29] Y. Harada, X. L. Li, P. W. Bohn, and R. G. Nuzzo, "Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays," Journal of the American Chemical Society, vol. 123, pp. 8709-8717, 2001.
[30] L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, U. Gosele, and T. Y. Tan, "Silicon nanowhiskers grown on < 111 > Si substrates by molecular-beam epitaxy," Applied Physics Letters, vol. 84, pp. 4968-4970, 2004.
[31] H. Fang, Y. Wu, J. H. Zhao, and J. Zhu, "Silver catalysis in the fabrication of silicon nanowire arrays," Nanotechnology, vol. 17, pp. 3768-3774, 2006.
[32] S. Bauer, J. G. Brunner, H. Jha, Y. Yasukawa, H. Asoh, S. Ono, H. Bohm, J. P. Spatz, and P. Schmuki, "Ordered nanopore boring in silicon: Metal-assisted etching using a self-aligned block copolymer Au nanoparticle template and gravity accelerated etching," Electrochemistry Communications, vol. 12, pp. 565-569, 2010.
[33] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, and O. Elkechai, "Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution," Applied Surface Science, vol. 255, pp. 6210-6216, 2009.
[34] V. A. Sivakov, G. Bronstrup, B. Pecz, A. Berger, G. Z. Radnoczi, M. Krause, and S. H. Christiansen, "Realization of Vertical and Zigzag Single Crystalline Silicon Nanowire Architectures," Journal of Physical Chemistry C, vol. 114, pp. 3798-3803, 2010.
[35] K. Tsujino and M. Matsumura, "Helical nanoholes bored in silicon by wet chemical etching using platinum nanoparticles as catalyst," Electrochemical and Solid State Letters, vol. 8, pp. 193-195, 2005.
[36] K. Tsujino and M. Matsumura, "Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts," Electrochimica Acta, vol. 53, pp. 28-34, 2007.
[37] C. L. Lee, K. Tsujino, Y. Kanda, S. Ikeda, and M. Matsumura, "Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts," Journal of Materials Chemistry, vol. 18, pp. 1015-1020, 2008.
[38] S. Yae, T. Hirano, T. Matsuda, N. Fukumuro, and H. Matsuda, "Metal nanorod production in silicon matrix by electroless process," Applied Surface Science, vol. 255, pp. 4670-4672, 2009.
[39] 劉陵崗等著,”實用奈米技術/Practical Nanotechnology” ,新文京, 2005.
[40] 任鏘瑜, "奈米金屬微粒之製備及其性質研究",清華大學化工所碩士論文,1999.
[41] 劉仲明,"奈米科技的發展與挑戰",2001 材料奈米技術專刊,1, 2001.
[42] M. Moreno, D. Murias, J. Martı´nez, C. Reyes-Betanzo, A. Torres, R. Ambrosio, P. Rosales, P. Roca i Cabarrocas, M. Escobar, "A comparative study of wet and dry texturing processes of c-Si wafers for the fabrication of solar cells", Solar Energy, vol.101, pp.182-191, 2014.
[43] Sally D. Solomon, Mozghan Bahadory, Aravindan V. Jeyarajasingam, Susan A. Rutkowsky, and Charles Boritz, "Synthesis and Study of Silver Nanoparticles", Journal of Chemical Education, vol.84, pp.322-325, 2007.
[44] RATYAKSHI, R.P. CHAUHAN, "Colloidal Synthesis of Silver Nano Particles", Asian Journal of Chemistry, vol.21, pp113-116, 2009.
[45]徐大威,"以多孔矽為基板的矽奈米線陣列結構製程研究",國立中央大學碩士論文,2015.
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2016-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明