博碩士論文 953403011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.22.81.215
姓名 許文濃(Wen-Nong Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎂鋁合金電極研製及其產氫效益之研究
(Study on the preparation of Mg-Al alloy electrodes and their applications in efficiency improvement of hydrogen production)
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究之第一部分是探討鎂鋁合金晶粒細緻化及電極材料之研製,研究結果顯示熔煉時,導入超音波於純鎂及鋁鎂合金熔湯中,由於除氣及介在物的分散作用,可以使所形成之鎂金屬及鎂鋁合金晶粒細緻化,進而改善其鑄造之品質,晶粒精細化之主要原因是空泡阻礙晶體成長及氧化物和鋁錳化合物之分散。然而純鎂及鎂合金的機械性質反而下降,主要原因是鎂元素及鋅元素本身在熔煉時蒸氣壓較高之故。另外以鑄造方式製作鎂鋁合金電極是不適當的,因為無法控制電極材料的品質。
本研究第二部份係以粉末冶金的方法,燒結不同成分的鋁鎂合金電極,作為電解水電極用。實驗結果顯示鎂鋁電極的電流密度大小依序如下:Mg < Mg-10wt%Al < Mg-25wt%Al < Mg-50wt%Al < Mg-75wt%Al < Mg-90wt%Al < Al 。純Al電極具有最佳的電解效果;但如果同時考慮電解效果及抗腐蝕之能力,則應選用Mg-Al(75 wt%)當電極材料為最佳。另外在電解的過程中,若加入超音波場可有效的提昇電解之效率,在30wt%KOH的電解液中,電流增加率大約為23.1%,使用FRA模組量測電化學阻抗頻譜(EIS)及曲線回歸,顯示超音波震盪均有效地改善電極間的極化阻抗,其中以降低電解時的濃度阻抗值約44-51%Ω最為顯著。最後,採用三組並聯電極組方式做實驗,研究相關水電解實驗參數。結果顯示三電極組的產氫量會比單電極組產氫量增加2.2~2.9倍數。最後本研究並探討外加磁場對電解水之影響,加入磁場會使得電解反應變快,若外加勞倫茲力往上之磁場,電極距離為5mm,電解液濃度為10wt%的條件下,可以得到最佳的電流密度差值約370 mA/cm2 。
摘要(英) The first part of this study is aimed to investigate the grain size refinement for magnesium and magnesium-aluminum (Mg-Al) alloys. Under the ultrasonic treatment, the cavitation bubbles were generated in the melt. Both degassing action and dispersion of inclusion imped the growth of crystal grains and result in the refinement of crystal grains of magnesium and magnesium- aluminum alloys. Therefore, the casting property of the metal and alloys was improved. Nevertheless, the mechanical properties of both magnesium and its alloys were decreased. The reason is due to lower vapor pressure of magnesium and zinc in the melt. We also found that casting method is not suitable for the preparation of Mg-Al alloy electrodes because their properties were difficult to control by this method.
In the second part of this study, power metallurgy was used to sinter the Mg-Al alloy electrodes with different compositions. The obtained electrodes were used for water electrolysis. The results demonstrate that the current density decreases as the following tendency: Mg < Mg-10wt%Al < Mg-25wt%Al < Mg-50wt%Al < Mg-75wt%Al < Mg-90wt%Al < Al 。 The Al electrode possesses the best electrolysis efficiency. However if both the anti -corrosion ability and electrolysis are considered, the Mg-Al (75 wt %) should be the best electrode material. During the electrolysis process, if the ultrasonic field was applied to the electrolysis cell, the electrolysis efficiency was greatly enhanced. The current increased about 23.1% in the 30 wt% KOH aqueous solution. The Electrochemical Impedance Spectroscopy (EIS) curves measured by Frequency Response Analysis (FRA) module and the regression curves showed that the polarization impedances between electrodes were effectively improved. The concentration polarization in the 30wt% KOH aqueous solution was reduced to 44-51% during the electrolysis process. Furthermore, three groups of parallel electrodes were used for the water electrolysis experiments. The results demonstrate that the hydrogen electrolysis cell using a multi-electrode(6 sheets) group is 2.2-2.9 time higher than that using a single electrode group. Finally, the magnetic field was also used to enhance the electrolysis reaction. The results show that the optimal current density is 370 mA/cm2 at electrode distance of 5mm and a 10 wt% electrolyte concentration with the Lorentz force up.
關鍵字(中) ★ 超音波震盪
★ 鑄造鎂合金
★ 電極
★ 水解
★ 極化阻抗
★ 勞倫茲力
關鍵字(英) ★ Ultrasonic vibration
★ Cast magnesium alloys
★ Electrode
★ Water electrolysis
★ Polarization impedance
★ Lorentz Force
論文目次 摘 要 i
Abstract ii
謝 誌 iv
目 錄 v
圖目錄 ix
表目錄 xii
第一章 緒論 1
第二章 研究背景 3
2-1鎂及鎂合金材料 3
2-1-1鎂金屬 3
2-1-2鎂合金及其命名 4
2-1-3鎂合金之保護性氣體 5
2-1-4合金元素對鎂合金的影響 7
2-1-5鎂合金之晶粒細化製程 9
2-2 超音波 10
2-2-1超音波空泡成核 12
2-2-2音波空泡的種類 13
2-2-3超音波設備 14
2-2-4超音波在冶金領域的應用 15
2-3 粉末冶金 16
2-4 氫能 19
2-5 電解理論 22
2-5-1電解水製氫之基本原理 22
2-5-2電解電壓 24
2-5-3電解質 25
2-5-4法拉第電解定律 27
2-5-5極化作用 27
2-5-6歐姆極化 28
2-5-7活性極化 28
2-5-8濃度極化 29
2-5-9電化學阻抗與等效電路 30
2-5-10勞侖茲力 33
2-5-11電極磁化效應 34
2-5-12離子輸送數 37
2-5-13效率 37
第三章鑄造鎂合金晶粒細化及電極研製之探討 39
3-1 前言 39
3-2 文獻回顧 40
3-3 研究目的 43
3-4實驗設備與步驟 44
3-4-1實驗設備 44
3-4-2實驗用品 46
3-4-3實驗步驟 47
3-5結果與討論 50
3-5-1超音波輸出功率(output power)和震盪時間(processing time)之影響 50
3-5-2超音波熔鍊對純鎂微觀組織的影響 53
3-5-3超音波熔鍊對鎂合金(AM60 & AZ91)微觀組織的影響 55
3-5-4超音波對純鎂及鎂合金機械性質的影響 58
3-5-5鑄造鎂鋁合金電極材料 59
3-5-6結論 60
第四章 粉末冶金法製作鎂鋁合金產氫電極及多電極之探討 61
4-1 前言 61
4-2 文獻回顧 63
4-3 研究目的 64
4-4實驗設備與步驟 66
4-4-1實驗設備 66
4-4-2實驗材料 68
4-4-3實驗架設 69
4-4-4實驗步驟 71
4-4-4-1鎂鋁合金電極水解產氫 71
4-4-4-2磁場水電解產氫 72
4-5結果與討論 73
4-5-1粉末冶金法製作鎂鋁合金產氫電極之探討 73
4-5-1-1鎂鋁電極的電解特性 73
4-5-1-2鎂鋁電極之電流-電壓曲線 74
4-5-1-3不同的電解液濃度下,超音波對 Mg-Al電極水電解效果之影響 75
4-5-1-4 Mg-75%Al電極產氫效益 78
4-5-1-5結論 79
4-5-2多電極組之水電解產氫行為之探討 80
4-5-2-1磁力作用下氣泡現象之觀察 80
4-5-2-2 IV分解電位的探討 84
4-5-2-3勞倫茲力的水電解效應及產氫量 86
4-5-2-4結論 89
第五章 總結論 90
參考文獻 92
作者簡介 99
參考文獻 [1] A. I. Taub,“Automotive Materials: Technology Trends and Challenges in the 21st Century,” MRS Bulletin, Vol.31, pp.336-343, 2006.
[2] E. A. Hiedemann, “Metallurgical Effects of Ultrasonic Waves,”J. Acoust. Soc. Am, Vol.26, pp.800-831, 1954.
[3] J. Campbell, “ Effects of Vibration During Solidification,”Int. Mat. Rev., Vol.26, pp.71-108, 1981.
[4] G. I. Eskin, “Influence of Cavitation Treatment of Melts on the Processes of Nucleation and Growth of Crystals During Solidification of Ingots and Castings from Light Alloys,” Ultrason. Sonochem.,Vol.1, pp.59-63, 1994.
[5] G.I. Eskin, “Cavitation Mechanism of Ultrasonic Melt Degassing,” Ultrason. Sonochem., Vol.2, pp137-141, 1995.
[6] J. R. Davis, “Metals Handbook: Magnesium and Magnesium Alloys,”ASM International, pp.559-574, 1998.
[7] M. Michael, M. Avedesian, “Magnesium and Magnesium Alloys,” ASM Specialty Handbook, pp. 3-15, 1999.
[8] 鐘國榮 , 鎂合金燃燒、鑽削加工與表面處理之研究,國立中央大學機械系,博士論文,民國91年。
[9] I. G. Farbenindustrie: British Patent GB359,425,1931.
[10] H. David, D. H. StJohn, “Grain Refinement of Magnesium Alloys,”Metallurgical and Materials Transactions A, Vol.36, pp.1669-1679, 2005.
[11] D. H. StJohn,“The Role of Solute in Grain Refinement of Magnesium,”Metallurgical and Materials Transactions A, Vol.31, pp.2895-2906, 2000.
[12] M. Qian, “Effect of Iron on Grain Refinement of High-purity Mg–Al Alloys,” Scripta Materialia, Vol.51, pp.125–129, 2004.
[13] D. H. StJohn, “Grain Refinement of Magnesium – Aluminium Alloys by Iron Inoculation,”Materials Forum, Vol.29, pp.301-305, 2005.
[14] C. Vives, “Crystallization of Aluminium Alloys in the Presence of Cavitation Phenomena Induced by a Vibrating Electromagnetic Pressure,” Journal of Crystal Growth, Vol.158, pp.118-127, 1996.
[15] Y. Tsunekawa, “Application of Ultrasonic Vibration to in situ MMC Process by Electromagnetic Melt Stirring,” Materials and Design, Vol.22, pp.467-472, 2001.
[16] 陳永增 , 超音波空泡破壞應用在鋁合金氧化膜診斷上之研究,國立中央大學機械系,博士論文,民國92年。
[17] T. J. Mason, “Sonochemistry, the Uses of Ultrasound in Chemistry,” Royal Society of Chemistry,Vol.8, pp.27-35, 1990.
[18] K. S. Suslick, “The Chemical Effects of Ultrasound,” Scientific American, Vol.80, pp.80-86, 1989.
[19] E. Apfel, “Acoustic Cavitation Inception,” Ultrasonics, Vol. 22, pp167-173, 1984.
[20] E. A. Neppiras, “Acoustic Cavitation: an Introduction,” Ultrasonics, Vol.22, pp25-28, 1984.
[21] L. D. Rozenberg, High Intensity Ultrasonic Fields, Plenum Press, New York, 1971.
[22] S. Dunn,“Hydrogen Futures: Toward a Sustainable Energy System,”Int. J. Hydrogen Energy, Vol.27, pp.235-264, 2002.
[23] 黃心華,電解水產氫中極化作用之分析與研究,國立中央大學機械系, 碩士論文,民國102年。
[24] E. Zoulias, E. Varkaraki, N. Lymberopoulos, “A Review on Water Electrolysis,” Centre for Renewable Energy Sources, Greece, pp.1-18, 2011.
[25] B. E. Conway, G. Jerkiewiez, “Relation of Energies and Coverages of Underpotential and Overpotential Deposited H at Pt and Other Metals to the ‘Volcano Curve’ for Cathodic H2 Evolution Kinetics,” Electrochimca Acta, Vol.45, pp.4075-4083, 2000.
[26] 田中正三郎著;賴耿陽譯著, 應用電化學, 復漢出版社印行, 1998.
[27] 魚崎浩平,喜多英明同撰,黃忠良譯,基本電化學,復漢出版社, 1983.
[28] J. Koryta, W. Dvorak, L. Kavan, “Principles of Electrochemistry,” Second Edition, John Wiley and Sons, New York, 1993.
[29] 林明源, 利用外部作用增加水電解產氫效率之研究,國立中央大學機械系,博士論文,民國102年。
[30] D. K. Cheng, “Field and Wave Electromagnetics,”Third Edition, Addison-Wesley, New York, 1989.
[31] M. Y. Lin, L .W. Hourng, C. W. Kuo, “The Effect of Magnetic Force on Hydrogen Production Efficiency in Water Electrolysis,” Int. J. Hydrogen energy, Vol 37, pp.1311-1320, 2011.
[32] E. A. Neppiras, “Acoustic Cavitation Thresholds and Cyclic Processes, ” Ultrasonics, Vol.18, pp.201-209, 1980.
[33] E. Apfel, “The Role of Impurities in Cavitation-Threshold Determination,” J. Acoust. Soc. Am., Vol.48, pp.1179-1186, 1970.
[34] K. S. Suslick, S. J. Doktycz, E. B. Flint, “ On the Origin of Sonoluminescence and Sonochemistry,” Ultrasonics, Vol.28, pp.280-290,1990.
[35] B. Pugin, “ Qualitative Characterization of Ultrasound Reactors for Heterogeneous Sonochemistry,” Ultrasonics, Vol.25, pp.49-55, 1987.
[36] G. I. Eskin, “ Broad Prospects for Commercial Application of the Ultrasonic (Cavitation) Melt Treatment of Light Metals,”Vol.8, pp.319-325, 2001.
[37] H. Xu, X. Jian, T. Meek, Q. Han, “ Degassing of Molten Aluminum A356 Alloy Using Ultrasonic Vibration, ” Materials Letters, Vol.58, pp.3669-3673, 2004.
[38] D. V.Neff,“Nonferrous Molten Metal Processes,”ASM Handbook-Casting, Vol.15, pp.445-496, 1988.
[39] Y. J. Chen, L. W. Huang, T. S. Shih, Diagnosis of Oxide Films by Cavitation Micro-jet Impact, Materials Transactions, ” Vol. 44, pp.327-335, 2003.
[40] Y. J. Chen, L. W. Huang, T. S. Shih, “Marking Oxide Film on the Section of Al-XSi Alloys by Ultrasonic-vibration Treatment,” Material Transactions, Vol.44, pp.1190-1197, 2003.
[41] Y. Mizutani, T. Tamura, K. Miwa, “Microstructural Refinement Process of Pure Magnesium by Electromagnetic Vibrations, ” Materials Science and Engineering A, pp.413-414 and pp.205-210, 2005.
[42] Y. J. Chen, W. N. Hsu, J. R. Shih, “The Effect of Ultrasonic Treatment on Microstructural and Mechanical Properties of Cast Magnesium Alloys,”Materials Transactions,Vol.50, pp.401-408, 2009.
[43] 陳維新著,能源概論第五版,高立出版社,2011.
[44] K. Mazloomi, N. B. Sulaiman, H. Moayedi, “Electrical Efficiency of Electrolytic Hydrogen Production,”International Journal of Electrochemical Science, Vol.7, pp.3314-3326, 2012.
[45] N. Nagai, M. Takeuchi, T. Kimura, T. Oka, “Existence of Optimum Space Between Electrodes on Hydrogen Production by Water Electrolysis,”Int. J. Hydrogen Energy, Vol.28, pp. 35-41, 2003.
[46] R. F. de Souza , J. C. Padilha , R. S. Goncalves , M. O. de Souza, J. Rault-Berthelot,“Electrochemical Hydrogen Production from Water Electrolysis Using Ionic Liquid as Electrolytes: Towards the Best Device, ” J. Power Sources, Vol.164, pp. 792-798, 2007.
[47] R. F. de Souza, J. C. Padilha, R. S. Goncalves, J. Rault-Berthelot, “Dialkylimidazolium Ionic Liquids as Electrolytes for Hydrogen Production from Water Electrolysis,” Electrochemistry Communications, Vol.8, pp.211-216, 2006.
[48] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch, “ Over 18% Solar Energy Conversion to Generation of Hydrogen Fuel; Theory and Experiment for Efficient Solar Water Splitting,” Int. J. Hydrogen Energy, Vol.26, pp.653-659, 2001.
[49] F. Marangio, M. Santarelli, M. Cali,“Theoretical Model and Experimental Analysis of a High Pressure PEM Water Electrolyser for Hydrogen Production,” Int. J. Hydrogen Energy, Vol.34, pp.1143-1158, 2009.
[50] P. K. Dubey, A. S. K. Sinha, S. Talapatra, N. Koratkar, P. M. Ajayan, O. N. Srivastava, “Hydrogen Generation by Water Electrolysis Using Carbon Nanotube Anode,” Int. J. Hydrogen Energy, Vol.35, pp.3945-3950, 2010.
[51] R. Solmaz,“Electrochemical Preparation and characterization of C/Ni–NiIr Composite Electrodes as Novel Cathode Materials for Alkaline Water Electrolysis,”Int. J. Hydrogen Energy, Vol.38, pp.2251-2256, 2013.
[52] V. M. Nikolic, G. S. Tasic, A. D. Maksic, D. P. Saponjic, S. M. Miulovic , M. P. Marceta Kaninski, “Raising Efficiency of Hydrogen Generation from Alkaline Water Electrolysis - Energy Saving,” Int. J. Hydrogen Energy, Vol.35, pp.12369-12373, 2010.
[53] H. Matsushima, A. Bund, W. Plieth, S. Kikuchi, Y. Fukunaka, “Copper Electrodeposition in a Magnetic Field,” Electrochimica Acta, Vol.53, pp.161–166, 2007.
[54] A. Bund, S. Koehler, H. H. Kuehnlein, W. Plieth,“Magnetic Field Effects in Electrochemical Reactions,” Electrochimica Acta, Vol.49, pp.147-152, 2003.
[55] T. Weier, R. Huller, G. Gerbeth, F. P. Weiss, “Lorentz Force Influence on Momentum and Mass Transfer in Natural Convection Copper Electrolysis,”Chemical Engineering Science,Vol.60, pp.293-298, 2005.
[56] T. Iida, H. Matsushima, Y. Fukunaka, “Water Electrolysis under a Magnetic Field,” Journal of the Electrochemical Society, Vol. 154, pp.112-115, 2007.
[57] J. R. Macdonload, W. R. Kenan, “Impedance Spectroscopy Emphasizing Solid Materials and Systems,” Wiley, New York, 1987.
[58] W. N. Hsu, T. S. Shih, M. Y. Lin, “Preparation of Al - Mg Alloy Electrodes by Powder Metallurgy and Their Application for Hydrogen Production,” Advances in Materials Science and Engineering Vol.2014, 7 pages, 2014.
[59] M. Y. Lin, W. N. Hsu, L. W. Hourng, T. S. Shih, “Effect of Lorentz Force on Hydrogen Production in Water Electrolysis Employing Multielectrodes, ” Journal of Marine Science and Technology, Vol.24, 8 pages, 2016.
指導教授 施登士(Teng-Shih Shih) 審核日期 2016-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明