參考文獻 |
[1] D.D.L.Chung, Thermal Interface Materials, J.Mater.Perform. 10(2001)56-59
[2] R.Skuriat, J.F.Li, P.A.Agyakwa, N.Mattey, P.Evansand C.M.Johnson, Degradation of Thermal Interface Materials for High-TemperaturePower Electronics Applications, Microelectron. Reliab.53(2013)1933-1942.
[3] B.Smith, T.BrunschwilerandB.Michel,Comparison of Transient and Static Test Methods for Chip-to-Sink ThermalInterface Characterization, Microelectron.J.40(2008)1379-1386.
[4] R.Kempers,P.Kolodner,A.Lyonand A. J.Robinson,A High-Precision Apparatus for The Characterization of Thermal Interface Materials,Rev Sci Instrum.80(2009)095111-1-095111-11.
[5] R.Mahajan,C.P.Chiuand G.Chrysler,Cooling a Microprocessor Chip, Proc IEEE94(2006)1476-1486.
[6] Tien-Chan Chang, Yiin-KuenFuh, Sheng-XunTu, Yueh-Mu Lee. Application of graphite nanoplatelet-based and nanoparticle composites to thermal interface materials. Micro& Nano Letters, (2015) Vol. 10, pp. 296–301.
[7] Pour Shahid Saeed Abadi P, Leong CK, Chung DDL. Factors that govern the performance of thermal interface materials. J Electron Mater (2009); 38(1):175–92.
[8] Chaowasakoo T, TengHoon Ng, Songninluck J, Stern MB, Ankireddi S. Indium solder as a thermal interface material using fluxless bonding technology. In: 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2009. SEMI-THERM 2009, San Jose CA, (2009) 15–19 March, 180–5.
[9] Marjan Goodarzi, Ahmad Amiri, Mohammad Shahab Goodarzi, Mohammad Reza Safaei, Arash Karimipour, Ehsan Mohseni Languri, Mahidzal Dahari b. Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids. Int. Commun. Heat Mass Transfer, 66 (2015) 172–179
Chen H, Chen M, Di J, Xu G, Li H, Li Q. Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J PhysChem C (2012); 116: 3903–9.
[10] J. Liu, B. Michel, M. Rencz, C. Tantolin, C. Sarno, R. Miessner, K-V. Schuett, X. Tang, S. Demoustier, A. Ziaei, Recent progress of thermal interface material research - an overview, THERMINIC, Rome, Italy, (2008) September 24-26.
[11] Xiaojuan T., Mikhail E. I., Elena B. B, Robert, C. H. Anisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites, Scientific Reports, (2013) 10, 01710
[12] Xiang, J. L. and Drzal, L. T. Thermal Conductivity of Exfoliated Graphite Nanoplatelet Paper, Carbon 49, (2011)773–778.
[13] R. Prasher, Proc. IEEE 94 (2006) 1571-1585.
[14] W.Y. Zhou, S.H. Qi, H.D. Li, S.Y. Shao. Study on insulating thermal conductive BN/HDPE composites. Thermochim. Acta 452 (2007) 36-42.
[15] K.M.F. Shahil, A.A. Balandin. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 152 (2012) 1331-1340.
[16] Dresselhaus, M. S., Dresselhaus, G., Eklund, P. C. & Chung, D. D. L. Lattice vibrations in graphite and intercalation compounds of graphite. Mater. Sci. Eng.31, (1977) 141–152.
[17] Chung, D. D. L. Exfoliation of graphite. J. Mater. Sci. 22, (1987) 4190–4198.
[18] G.Q. Qi, J. Yang, R.Y. Bao, Z.Y. Liu, W. Yang, B.H. Xie, et al., Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage, Carbon 88 (2015) 196-205.
[19] S. Ye, Q. Zhang, D. Hu, J. Feng, Coreeshell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage, J. Mater Chem. A 3 (7) (2015) 4018e4025. |