博碩士論文 103323012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.133.155.235
姓名 李睿中(Rui-Zhong Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 石墨烯與奈米石墨嵌入式熱介面材料與散熱應用
(Graphene and Nanographite Embedded Composites as Thermal Interface Materials For Heat Dissipation Applications)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討熱介面材料(Thermal Interface Materials, TIMs) 之研發及性能探討。因高功率電子元件容易產生大量熱能,故常有熱破壞及熱故障之現象,由於電子元件表面有許多細微裂縫所形成之熱阻抗(Thermal resistance),熱介面材料(TIMs)可應用於電子元件之間以填補元件間之間隙進而提升熱傳導性能。
在這項研究中,主要分為兩部份,第一部分係製備奈米銀顆粒(Silver Nano Particles, SNPs)和單壁奈米碳管(Single Wall Carbon Nanotubes, SWCNTs)採用網印刷製程(Screen Printed)於石墨烯片基板。我們將探討其TIM材料之不同方向(In-plane & Through-plane)之導電率(Electrical conductivity)與導熱率(Thermal conductivity)性能並且實際應用於IGBT與鋁散熱鰭片之間的溫度量測。第二部分則是將石墨烯(Graphene)粉末及奈米銀(Silver)粉末混合於聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)利用網印技術製造熱介面材料並研究其導熱性能。
利用有限元素模擬技術(Finite Element Method)的方法,透過模擬軟體COMSOL 5.0進行模擬,將利用疲勞模組包含建模與焊點,並探討IGBT使用壽命。另針對鋁散熱片之間距對IGBT實際操作進行模擬與實驗討論。
摘要(英) In this thesis, the thermal interface material (Thermal Interface Materials, TIMs) discussion on the development and performance. For high power electronic components easy to produce a large amount of heat, so very hot and the thermal failure of the phenomenon, as electronic component there are many fine cracks on the surface of the formation of thermal resistance, TIMs can be applied to electronic components to fill the gap between components to enhance thermal conductivity.
In this study, the study can be divided into two parts, the first part of preparation of Silver Nano Particles (SNPs) and Single Wall Carbon Nanotubes (SWCNTs) using screen printing process on Graphene substrate Board. We will explore the TIM of materials in different directions (In-plane and Through-plane) of electrical conductivity and thermal conductivity and applied to IGBT temperature measurement with aluminium cooling fins. Second part of Graphene powder and Silver Nano Particles mixed with Polydimethylsiloxane (PDMS) using screen printing technology to create thermal interface material and its thermal conductivity.
關鍵字(中) ★ 熱介面材料
★ 網印技術
★ 熱管理
關鍵字(英) ★ TIM
★ Screen Printing
★ Thermal management
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 3
第二章 石墨片製成熱介面材料 4
2-1 奈米材料基於石墨片製成熱介面材料之應用 4
第三章 網印奈米材料於石墨片散熱應用 7
3-1 網印奈米材料於石墨片之製備 7
3-2 熱導率量測 11
3-3 實際應用於溫度量測 15
3-4 SEM及元素分析 16
第四章 聚二甲基矽氧烷熱介面材料 19
4-1 聚二甲基矽氧烷(PDMS)熱介面材料之製備 19
4-2 熱導率量測 21
4-3 實際應用於溫度量測 23
4-4 電子顯微鏡拍攝 26
第五章 結論 27
第六章 IGBT內部接腳之熱應力與熱疲勞模擬…………………………………...28
6-1 研究方法……………………………………………………………….28
6-2 15kW IGBT內部溫度模擬架構………………………………………31
6-3 15kW IGBT內部溫度模擬流程……………………………………….32
6-4 15 kW Converter System模擬與疲勞模組介紹………………………35
6-5 模擬結果……………………………………………………………….36
參考文獻…………………………………………………………………………….40
參考文獻 [1] D.D.L.Chung, Thermal Interface Materials, J.Mater.Perform. 10(2001)56-59

[2] R.Skuriat, J.F.Li, P.A.Agyakwa, N.Mattey, P.Evansand C.M.Johnson, Degradation of Thermal Interface Materials for High-TemperaturePower Electronics Applications, Microelectron. Reliab.53(2013)1933-1942.

[3] B.Smith, T.BrunschwilerandB.Michel,Comparison of Transient and Static Test Methods for Chip-to-Sink ThermalInterface Characterization, Microelectron.J.40(2008)1379-1386.
[4] R.Kempers,P.Kolodner,A.Lyonand A. J.Robinson,A High-Precision Apparatus for The Characterization of Thermal Interface Materials,Rev Sci Instrum.80(2009)095111-1-095111-11.
[5] R.Mahajan,C.P.Chiuand G.Chrysler,Cooling a Microprocessor Chip, Proc IEEE94(2006)1476-1486.

[6] Tien-Chan Chang, Yiin-KuenFuh, Sheng-XunTu, Yueh-Mu Lee. Application of graphite nanoplatelet-based and nanoparticle composites to thermal interface materials. Micro& Nano Letters, (2015) Vol. 10, pp. 296–301.

[7] Pour Shahid Saeed Abadi P, Leong CK, Chung DDL. Factors that govern the performance of thermal interface materials. J Electron Mater (2009); 38(1):175–92.

[8] Chaowasakoo T, TengHoon Ng, Songninluck J, Stern MB, Ankireddi S. Indium solder as a thermal interface material using fluxless bonding technology. In: 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2009. SEMI-THERM 2009, San Jose CA, (2009) 15–19 March, 180–5.

[9] Marjan Goodarzi, Ahmad Amiri, Mohammad Shahab Goodarzi, Mohammad Reza Safaei, Arash Karimipour, Ehsan Mohseni Languri, Mahidzal Dahari b. Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids. Int. Commun. Heat Mass Transfer, 66 (2015) 172–179
Chen H, Chen M, Di J, Xu G, Li H, Li Q. Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J PhysChem C (2012); 116: 3903–9.
[10] J. Liu, B. Michel, M. Rencz, C. Tantolin, C. Sarno, R. Miessner, K-V. Schuett, X. Tang, S. Demoustier, A. Ziaei, Recent progress of thermal interface material research - an overview, THERMINIC, Rome, Italy, (2008) September 24-26.

[11] Xiaojuan T., Mikhail E. I., Elena B. B, Robert, C. H. Anisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites, Scientific Reports, (2013) 10, 01710

[12] Xiang, J. L. and Drzal, L. T. Thermal Conductivity of Exfoliated Graphite Nanoplatelet Paper, Carbon 49, (2011)773–778.

[13] R. Prasher, Proc. IEEE 94 (2006) 1571-1585.

[14] W.Y. Zhou, S.H. Qi, H.D. Li, S.Y. Shao. Study on insulating thermal conductive BN/HDPE composites. Thermochim. Acta 452 (2007) 36-42.

[15] K.M.F. Shahil, A.A. Balandin. Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Commun. 152 (2012) 1331-1340.

[16] Dresselhaus, M. S., Dresselhaus, G., Eklund, P. C. & Chung, D. D. L. Lattice vibrations in graphite and intercalation compounds of graphite. Mater. Sci. Eng.31, (1977) 141–152.

[17] Chung, D. D. L. Exfoliation of graphite. J. Mater. Sci. 22, (1987) 4190–4198.

[18] G.Q. Qi, J. Yang, R.Y. Bao, Z.Y. Liu, W. Yang, B.H. Xie, et al., Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage, Carbon 88 (2015) 196-205.

[19] S. Ye, Q. Zhang, D. Hu, J. Feng, Coreeshell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage, J. Mater Chem. A 3 (7) (2015) 4018e4025.
指導教授 傅尹坤 審核日期 2016-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明