博碩士論文 88222008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.190.156.80
姓名 高政揚(Zhen-yang Kao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 低濃度電解質在奈米管內異常的擴散和導電性
(Anomalous diffusivity and electric conductivity for low concentration electrolytes in nanopores)
相關論文
★ 金屬叢集的融化現象★ 帶電膠體系統之液態-液態/固態相變研究
★ 一價和多價叢集原子的熱穩定現象★ 金屬與合金分子叢集的結構
★ 物理系統之能量與焓分佈之統計力學研究★ 膠體系統平衡相域與動態凝聚之研究
★ 合金金屬叢集的溫度效應★ 介面膠體叢聚現象的理論研究
★ 帶電膠體懸浮液的相圖與液態-玻璃相變研究★ 膠體相圖之理論計算
★ 膠體、棒狀粒子混合系統之相圖的理論分析★ 利用時間序列的統計方法研究金屬叢集的動力學
★ 由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性★ 金銅合金金屬叢集(N=38)的磁性性質研究
★ 膠體、盤狀粒子混合系統的兩階段動態相變區域★ 由超快速形狀辨識、時間序列分割、時間序列交互相關分析以及擴散理論方法研究蛋白質Transthyretin片斷與金屬叢集的分子動力學模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
我們應用平衡與非平衡的分子動態(EMD 、NEMD)模擬研究電解質在奈米管內的傳輸性質。電解質由帶一價之正、負離子及中性水分子組成。在本論文中使用連續強制簡易模型 (Continuum restrictive primitivemodel(CRPM))、連續簡易模型 (Continuum primitive model(CPM))模擬電解質;將正、負離子浸入具極性的水分子環境,極性效應以巨觀介電常數(78.41)模擬成連續背景,並將整個系統放在電中性無限長的圓柱管。使用Gaussian isokinetic equation of motion 維持系統在室溫,同時也使用週期邊界條件 (periodic -boundary conditions),固定離子的濃度。我們擬探討通道半徑大小、離子濃度對平衡擴散性質與非平衡導電性質的影
響。CRPM 及CPM 的模擬結果顯示當離子濃度為0.1M ,擴散係數隨通道半徑縮小而減少;0.05M 時,擴散係數幾乎不變;但在低濃度0.025M ,隨著通道半徑縮小,擴散係數異常增加,此異常現象在加入電場的非平衡導電性
模擬也有相同結果。上述現象在本論文中皆可藉由自由能概念定性解釋。論文最後模擬水分子為佔有體積的中性軟球,結果顯示離子之擴散係數約小2 個數量級。
摘要(英) Abstract
We apply the equilibrium and the non-equilibrium molecular dynamics sim-ulationsto study the dynamic properties of electrolytes in nanopores. The primitive model and the restrictive primitive model widely used in the sta-tistical mechanics of liquid-state theory were used to model the electrolytes. The electrolytic ions were immersed in water, treated in this work as either a
dielectric continuum ignoring the size of solvent molecules or a macroscopic dielectric continuum (polar property) plus neutral soft spheres, and the whole system is put in a con¯ned space. To simulate a condition closer to processes of practical interest and yet maintain the imulation computationally manage-able,
we consider an in¯nitely long and uncharged cylindrical tube. The equi-librium property of self-di®usion coe± cent and the non-equilibrium property of electric conductivity are computed in terms of electrolytic concentration, particle size and cylindrical radius. Results of simulations for the continuum solvent restrictive primitive model and continuum solvent primitive modelshow normal behavior for the di®usion
coeefcient D vs pore radius R, i.e.,
D decreases with decreasing R, at ionic concentration c¸ =0.1 M, display R-independence
of D at certain threshold c¸ , and an anomalous increase in D
with reducing R at a lower c¸ =0.025 M. The mechanism of the anomaly is
interpreted to arise from the energetic and entropic factors. For the discrete
solvent primitive model, the simulated D is about two order of magnitude less
than the continuum solvent primitive model. This di®erence in D is attributed
to the solvation e®ect. Similar disparities between these latter results were
obtained by others for the discrete restrictive primitive model.
關鍵字(中) ★ 傳輸性質
★ 擴散
★ 電導性
★ 奈米管
關鍵字(英) ★ diffusivity
★ conductivity
★ nanopores
論文目次 Contents
ABSTRACT 2
I. INTROCUCTION 3
II. MOLECULAR DYNAMICS SIMULATION 5
A. Interparticle potential 5
B. Equilibrium MD simulation 7
C. Nonequilibrium MD simulation 8
III. NUMERICAL RESULTS 9
A. Self-diffusion coefficient: continuum solvent RPM vs continuum solvent
PM 10
B. Self-diffusion coefficient: discrete solvent primitive model 13
C. Conductivity: continuum solvent primitive model 14
IV. SUMMARY AND CONCLUSION 15
References
Figure captions
Figure1.~12.
Appendix A
Appendix B
Appendix C
參考文獻 [1] D.A. Doyle, J.M. Cabral, R.A. Pfuetzner, A. Kuo, J.M. Gulbis, S.L. Cohen, B.T. Chait,
and R. MacKinnon, Science 280, 69 (1998).
[2] B. Roux and M. Karplus, Annu. Rev. Biophys. Biomol. Struct. 23, 731 (1994).
[3] L.R. Forrest and M.S. Sansom 10, 174 (2000).
[4] S. Rivera and T.S. Sorenson, Mol. Simul. 13, 115 (1994).
[5] M. Lee and K.Y. Chan, Chem. Phys. Lett. 275, 56 (1997).
[6] D. Boda, D.D. Henderson and S. Sokolowski, J. Phys. Chem. B 104, 8903 (2000).
[7] B. Hribar, V. Vlachy, L.B. Bhuiyan, C.W. Outhwaite, J. Phys. Chem. B 104, 11522
(2000).
[8] M. Lee, K.Y. Chan, D. Nicholson and S. Zara, Chem. Phys. Lett. 307, 89 (2000).
[9] Y.W. Tang, I. Szalai and K.Y. Chan, J. Phys. Chem. A 105, 9616 (2001).
[10] V. Vlachy and A.D.J. Haymet, J. Electroanal. Chem. 283, 77 (1990).
[11] A. Steck and H.L. Yeager, J. Electrochem. Soc. 130, 1297 (1983).
[12] C. Gavach, G. Pamboutzoglou, M. Nedyalkov, G. Poucelly, J. Membr. Sci. 45, 37 (1989).
[13] G.B. Westermann-Clark and J.L. Anderson, J. Electrochem. Soc. 130, 839 (1983).
[14] P.K. Hansma, B. Drake, O. Marti, S.A. Gould and C.B. Prater, Science 243, 641 (1989).
[15] B. Sackmann and E. Neher, Single Channel Recording, (Plenum, New York, 1995).
[16] R.M. Lynden-Bell and J.C. Rasaiah, J. Chem. Phys. 105, 9266 (1996).
[17] G.R. Smith and M.S.P. Sansom, Biophys. J. 73, 1364 (1997).
[18] R.S. Eisenberg, Acc. Chem. Res. 3, 117 (1998).
指導教授 賴山強(San-Kiong Lai) 審核日期 2002-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明