博碩士論文 101353009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.144.187.103
姓名 姜冰蕾(Ping-Lei Chiang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
相關論文
★ 中尺寸LED背光模組之實驗研究★ 以反應曲面法進行行動電話卡勾之最佳化設計
★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為★ A1070在累進式背擠製下的機械性質與微結構之研究
★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究
★ 旋轉鍛造螺旋齒輪製程分析★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析
★ 以有限元素法與反應曲面法分析增量式板金成形★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計
★ 以有限元素法與反應曲面法分析兩點增量成形★ 引伸成形加工問題之有限元素分析
★ 應用流函數法分析軸對稱熱擠製加工問題★ 非對稱壓延加工問題之有限元素法分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文利用有限元素軟體Deform-3D進行模擬分析,研究上模具以行星運動路徑之旋轉鍛造傘形齒輪,為了探討旋轉鍛造傘形齒輪的品質設計問題,以下模穴填充率與應變均勻度為品質特性,以胚料體積V、胚料上端面直徑d_1、胚料下端直徑d_2、胚料下方高度h_1、(下模)每轉進給率S、上模具傾斜角 為品質因子,採用Box-Behnken實驗設計[36]進行模擬實驗,以建立品質反應曲面的模型。每個品質因子的實驗設計皆採用三水準,再以其分析結果為樣本,透過迴歸分析建立二階多項式預測模型,求得齒輪在良好填充率下,應變均勻度最小之最佳化解。本文結果顯示品質特性之預測模型具有精確度。
摘要(英) In this paper, the FEM simulation model of cold rotary forging is established under Deform-3D software environment. the upper die motion path is a planetary on cold rotary forging of a spur bevel gear. To investigate the quality design of spur bevel gear, the filling rate of lower die cave and equivalent strain coefficient of variance are quality goals based on the following quality factors: blank volume(V), the diameter of upper blank(d_1), the diameter of lower blank(d_2), the height of lower blank(h_1), feeding rate(S) and the angle of upper die( ). Using the Box-Behnken design of experiment [36], through the regression analysis to build a prediction model of second-order polynomial function. Regression analysis simulation result to obtain gears at the optimization in minimum equivalent strain coefficient of variance and good filling rate. The paper shows the prediction model of quality characteristics is accurate.
關鍵字(中) ★ 旋轉鍛造
★ 傘形齒輪
★ 有限元素分析
關鍵字(英) ★ rotary forging
★ bevel gear
★ FEM
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
符號說明 x
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-2-1圓柱及圓環旋轉鍛造鍛粗加工 3
1-2-2齒輪及複雜幾何鍛件的旋轉鍛造加工 5
1-3 研究動機 8
第二章 基本理論 10
2-1旋轉鍛造成型原理 10
2-2 旋轉鍛造運動分析 13
2-3傘形齒輪模具建立 18
第三章 有限元素法與反應曲面法 21
3-1 Deform-3D有限元素軟體[35] 21
3-1-1軟體介紹 21
3-1-2 Deform-3D的使用流程 24
3-2模擬參數設定 26
3-2-1旋轉鍛造加工參數及材料性質 26
3-2-2有限元素網格建構與解之收斂性探討 27
3-2-3行星路徑旋轉鍛造傘齒輪之有限元素分析結果例 29
3-3反應曲面法[36] 32
3-3-1實驗設計 33
3-3-2迴歸分析基本理論 36
第四章 結果與討論 40
4-1模擬驗證 40
4-2行星路徑旋轉鍛造傘形齒輪分析結果 41
4-2-1軸向成型力 41
4-2-2傘形齒輪之填充率 42
4-2-3齒輪之應變均勻度 44
4-3模型建構 44
4-3-1行星路徑回歸模型 48
4-3-2模型檢驗 59
4-4旋轉鍛造傘形齒輪之最佳化分析 60
4-4-1行星路徑之模擬實驗最佳化 60
4-5品質因子對品質特性之效應 61
4-5-1品質因子對填充率之效應 61
4-5-2品質因子對應變均勻度之效應 63
第五章 結論與建議 75
5-1結論 75
5-2建議 75
參考文獻 76
參考文獻 [1] E. E. Slick, "Method of and apparatus for forgingmetal". US Patent 915 232, 16 March 1909.
[2] R. A. C. Slater and E. Appleton, "Some experiments with model materials to simulate the rotary forging of hot steels," Proc. 11th Intl. Machine Tool Design Research Conf., Binningham, U.K., Sept, pp. 1117-1136, 1970.
[3] D. Zhou, S. Yuan, Z. R. Wang and X. Zhenrui, "Defects caused in forming process of rotary forged parts and their preventive methods," vol. 32, no. 1, pp. 471-479, 1992.
[4] G. Liu, S. J. Yuan, Z. R. Wang and T. Xie, "Finite element model and simulation of rotary forging of a disc," ACTA Metallurgica Sinica (English Letters), vol. 13, no. 2, pp. 470-475, 2009.
[5] J. A. Schey, T. R. Venner and S. L. Takomana, "Shape changes in the upsetting of slender cylinders," Journal of Engineering for Industry, vol. 104, no. 1, pp. 79-83, 1982.
[6] R. Shivpuri, "Past developments and future trends in the rotary or orbital forging process," Journal of Materials Shaping Technology, vol. 6, no. 1, pp. 55-71, 1988.
[7] L. Hua and X. Han, "3D FE modeling simulation of cold rotary forging of a cylinder workpiece," Materials & Design, vol. 30, no. 6, pp. 2133-2142, 2009.
[8] X. Han and L. Hua, "Effect of size of the cylindrical workpiece on the cold rotary-forging process," Materials & Design, vol. 30, no. 8, pp. 2802-2812, 2009.
[9] X. Han and L. Hua, "Friction behaviors in cold rotary forging of 20CrMnTi alloy," Tribology International, vol. 55, pp. 29-39, 2012.
[10] S. Choi, K. Na and J. Kim, "Upper-bound analysis of the rotary forging of a cylindrical billet," Journal of Materials Processing Technology, vol. 67, no. 1, pp. 78-82, 1997.
[11] J. Oudin, Y. Ravalard, G. Verwaerde and J. C. Gelin, "Force torque and plastic flow analysis in rotary upsetting of ring shaped billets," International journal of mechanical sciences, vol. 27, no. 11, pp. 761-780, 1985.
[12] X. Han and L. Hua, "Plastic deformation behaviors of cold rotary forging under different contact patterns by 3D elastic-plastic FE method," Materials Transactions, vol. 50, no. 8, pp. 1949-1958, 2009.
[13] G. Liu, S. J. Yuan, Z. R. Wang and D. C. Zhou, "Explanation of the mushroom effect in the rotary forging of a cylinder," Journal of materials processing technology, vol. 151, no. 1, pp. 178-182, 2004.
[14] H. K. Oh and S. Choi, "A study on center thinning in the rotary forging of a circular plate," Journal of materials processing technology, vol. 66, no. 1, pp. 101-106, 1997.
[15] I. Montoya, M. T. Santos, I. Pérez, B. González and J. F. Puigjaner, "Kinematic and sensitivity analysis of rotary forging process by means of a simulation model," International Journal of Material Forming, vol. 1, no. 1, pp. 383-386, 2008.
[16] P. Y. Cheng, Y. H. Chen, P. Zhou, Y. Li, "3D numerical simulation of rotary forging for bevel gear blank," Forging and Stamping Technology, vol. 33, no4, pp. 129-132, 2008.
[17] 何明祥, 斜齒輪溫間擺輾鍛造模具最佳化設計與壽命預估之研究, 國立高雄應用科技大學: 碩士論文, 2008.
[18] 蕭志祥, 傘形齒輪旋轉鍛造製程有限元素分析, 國立中央大學: 碩士論文, 2014.
[19] J. J. Sheu and C. H. Yu, "The die failure prediction prevention of the orbital forging process," Journal of Materials Processing Technology, vol. 201, pp. 9-13, 2008.
[20] X. Deng, L. Hua, X. Han and Y. Song, "Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear," Materials & Design, vol. 32, no. 2, pp. 1376-1389, 2011.
[21] X. B. Deng, L. Hua and X. H. Han, "Three-dimensional FE modelling simulation of cold rotary forging of spiral bevel gear," Ironmaking & Steelmaking, vol. 38, no. 2, pp. 101-111, 2011.
[22] W. C. Feng, W. G. Yao and P. Jiang, "Study on new spiral trajectory of orbital forming press," China Metalforming Equipment & Manufacturing Technology, vol. 49, no. 2, pp. 37-39, 2014.
[23] G. Samolyk, "Investigation of the cold orbital forging process of an AlMgSi alloy bevel gear," Journal of Materials Processing Technology, vol. 213, no. 10, pp. 1692-1702, 2013.
[24] Y. M. Li, H. J. Wang, X. Y. Wang and C. D. Zhu, "Study on rotary forging process of spiral bevel gear," Forging & Stamping Technology, vol. 34, no. 6, pp. 24-27, 2009.
[25] P. Y. Cheng, R. Hu, L. Hua and J. Lan, "Finite element analysis of cool rotary forging for straight tool bevel gear," Hot Working Technology, vol. 35, no. 2, pp. 65-68, 2006.
[26] H. P. Wang, Y. Z. Zang, L. G. Li and X. Lin, "Cold rotary forging of car half axle gear and 3-dimensional FEM simulation," Forging and Stamping Technology, vol. 32, no. 3, pp. 34-37, 2007.
[27] M. X. Yang and Z. Y. Ren, "Research on the technology of cold precision orbital forming for semi-axle-bevel gear," Machinery, vol. 39, no. 2, pp. 56-60, 2012.
[28] J. W. Sun, J. H. Fu, Y. T. Li, J. X. Cao and Y. Yan, "Analys of new rotary forging process of rear-semiaxis using Deform-3D," Forging and stamping technology, vol. 34, no. 3, pp. 160-163, 2009.
[29] R. Hu, P. Y. Cheng, L. Hua, Z. G. Lu and J. Lan, "Influence of processing parameter on stress and failure form of rotary roll cavity die for straight tooth bevel gear," Hot Working Technology, vol. 36, no. 1, pp. 38-41, 2007.
[30] P. Y. Cheng, R. Hu, Z. G. Lu and L. Hua, "Finite element analysis of maximum rolling pressure of rotary roll forming for straight tooth bevel gear," Forging and Stamping Technology, vol. 33, no. 1, pp. 50-52, 2008.
[31] Z. Marciniak, "A rocking-die technique for cold-forming operations," Mechanical Production Engineering, vol. 117, pp. 792-797, 1970.
[32] V. Patil Basavaraj, U. Chakkingal and T. S. Prasanna Kumar, "Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation," Journal of materials processing technology, vol. 209, no. 1, pp. 89-95, 2009.

[33] W. C. Feng, W. G. Yao, P. Jiang and Y. Q. Shi, "New multi sheet trajectory study of orbital forming press," Journal of Plasticity Engineering, vol. 20, no. 6, pp. 126-129, 2013.
[34] 劉漢貴, 李祖榮 且 朱國瑾, “擺輾運動軌跡及調整曲線的分析研究,” 精密成形工程, 第13冊, 編號 4, pp. 90-94, 1995.
[35] 胡建軍, 李小平, Deform-3D塑性成型CAE應用教程, 北京大學出版社, 2011年1月.
[36] 葉怡成, 製程與產品最佳化, 五南出版社, 2001年6月
[37] 林李旺,實驗設計與田口方法之實務與應用, 全華出版社, 2014年6月
[38] 趙龍清, 以有限元素法與反應曲面法分析加工路徑對傘齒輪之旋轉鍛造最佳化設計之影響, 國立中央大學: 碩士論文, 2015.
指導教授 葉維磬(Wei-Chinag Yeh) 審核日期 2016-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明