博碩士論文 101383007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.144.248.88
姓名 曾有志(Yu-Chih Tzeng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微量鈹與鈧對Al-7Si-0.6Mg合金:微結構、熱穩定性、與淬火敏感性之影響
(Effect of trace Be and Sc on microstructure, thermal stability, and quench sensitivity of Al-7Si-0.6Mg alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討微量鈹(0.05wt%)與鈧(0.04wt%)對Al-7Si-0.6Mg合金微結構、熱穩定性與淬火敏感性之影響。結果顯示,微量鈹與鈧均可以大幅降低富鐵相與鑄件縮孔之含量,而鈹可使鑄態合金中針狀與文字形富鐵相轉變為對延性較無害之節球狀Al-Fe-Si富鐵相,增加固溶於基地內的Mg含量,促使更多非平衡Mg2Si強化相的析出,有效提昇合金時效熱處理後的機械性質,但非平衡Mg2Si強化相在250℃熱暴露的過程中成長粗化成平衡β-Mg2Si相,導致合金機械強度的下降。而含鈧之鑄態合金對於非平衡Mg2Si相之析出量並無顯著影響,但富鐵相則為節球狀Al12Si6Fe2(Mg,Sc)5富鐵相,且可大幅提昇鑄件之緻密性,並在250℃熱暴露過程中析出Al3Sc相,有效抑制了晶粒成長與阻礙差排移動,導致含鈧合金不論在T6態或熱暴露後其機械性質(強度與延性)均較不含鈧或鈹之合金為高。
本研究並以Jominy End Quench終端淬火實驗法,探討微量鈹(0.05wt%)與鈧(0.04wt%)對Al-7Si-0.6Mg合金淬火敏感性的影響,結果顯示,微量鈹可大幅降低Al-7Si-0.6Mg合金中富鐵相之含量與略為細化共晶矽,並可增加合金中非平衡Mg2Si強化相的析出量,提升時效強化效果,使合金之淬火敏感性改善約10%。而添加鈧亦可降低合金中富鐵相的含量並可使合金在淬火過程中析出Al3Sc相,抑制粗大的β′-Mg2Si相的析出,提高後續時效處理過程中細小且密集的強化相析出量,進而有效改善合金之淬火敏感性達60%以上。研究也發現鑄態不含鈹與鈧之Al-7Si-0.6Mg合金之富鐵相以粗針狀β-Al5FeSi相及含鎂之文字形兩種型態存在,淬火速率的快慢並無法改變合金中共晶矽與富鐵相之型態,但快速淬火可促使合金之鋁基地成過飽和狀態,致使時效處理後之合金能獲取較高之機械性質,而慢速淬火則會在淬火過程中析出較粗大的β′-Mg2Si相及產生無析出區,因而降低合金時效處理後之機械性質,使合金具有較高淬火敏感性。
摘要(英) In the present study, the effects of trace amounts of beryllium (Be, 0.05 wt%) and scandium (Sc, 0.04 wt%) addition on the microstructures, thermal stability and quench sensitivity of Al-7Si-0.6Mg alloys were investigated. The results show that traces of Be and Sc significantly reduce the amount of the iron-bearing phase and the interdendritic shrinkage. Be transformed the acicular iron-bearing phases into the nodular Al-Fe-Si iron-bearing phase, which is less harmful to ductility. Moreover, the addition of Be increased the Mg content of the solid solution within the matrix, prompting greater precipitation of the metastable Mg2Si phase after T6 heat treatment and effectively enhancing the mechanical properties of the alloy. However, during the following thermal exposure at 250oC for 100 h, the metastable Mg2Si phase grew into the coarse β-Mg2Si equilibrium phase, resulting in a decrease in the mechanical strength of the alloy. Meanwhile, the addition of Sc had insignificant effect on the amount of metastable Mg2Si phase that precipitated. However, here, the iron-bearing phase was a nodular Al12Si6Fe2(Mg,Sc)5 phase, which significantly enhanced the density of the castings. After the same thermal exposure procedure, it was remarkably found that the precipitation of fine Al3Sc particles effectively inhibited grain growth and hindered the movement of dislocations. These factors led to the Sc-containing alloy having the best mechanical properties (strength and ductility) than the alloys without Sc or with Be during the following thermal exposure at 250oC.
In this study, the Jominy end quench test was adopted to investigate the effect of trace beryllium (Be, 0.05 wt%) and scandium (Sc, 0.04 wt%) on the quench sensitivity of Al-7Si-0.6Mg alloys. The results show that Be addition suppressed the formation of the brittle plate-like β-Al5FeSi iron-bearing phase, and prompt greater precipitation of the metastable Mg2Si strengthening phase to enhance age-hardening effect, ultimately improving the quench sensitivity of an Al-7Si-0.6Mg alloy by about 10%. Similarly, adding Sc can also change the plate-like structure of the iron-bearing phase to a comparatively harmless nodular form. In addition, at a lower quenching rate, the preferred precipitation of the Al3Sc phase inhibits the formation of a coarse β′-Mg2Si phase, promoting the nucleation of finely dispersed metastable Mg2Si precipitates in the subsequent aging treatment. The quench sensitivity of the alloy was effectively improved by more than 60%.
The quenching rate does not change the morphologies of the eutectic silicon and iron-bearing phases, but rapid quenching rates can cause the Al matrix of the alloy to be in a supersaturated state, resulting in enhanced mechanical properties after aging treatment. In contrast, slow quenching rates precipitates the relatively coarse β′-Mg2Si phase and also produces a precipitate free zone during the quenching process, thereby diminishing the mechanical properties of the alloy after the aging treatment, so that the Al-7Si-0.6Mg alloy possesses higher quench sensitivity.
關鍵字(中) ★ Al-7Si-0.6Mg合金
★ 熱穩定性
★ 淬火敏感性
★ 介金屬化合物
關鍵字(英)
論文目次 總 目 錄
頁數
中文摘要------------------------------------------------------------------------Ⅰ
英文摘要------------------------------------------------------------------------Ⅲ
總目錄---------------------------------------------------------------------------Ⅵ
圖目錄--------------------------------------------------------------------------VII
表目錄---------------------------------------------------------------------------VI
第一章、前言-------------------------------------------------------------------1
1.1鋁合金簡介--------------------------------------------------------------------1
1.2 Al-7Si-0.6Mg合金介紹與應用--------------------------------------------5
第二章、文獻回顧與理論基礎------------------------------------------10
2.1合金熱處理------------------------------------------------------------------10
2.2 強化相析出程序-----------------------------------------------------------12
2.3 Fe元素之影響---------------------------------------------------------------17
2.4改善富鐵相------------------------------------------------------------------19
2.5合金元素的作用------------------------------------------------------------21
2.5.1添加錳元素--------------------------------------------------------------21
2.5.2添加鈹元素--------------------------------------------------------------22
2.6 鈧元素對鋁合金之影響-------------------------------------------------22
2.7 高溫對合金之影響--------------------------------------------------------32
2.8 淬火速率對合金之影響--------------------------------------------------34
2.9 研究背景、動機與目的----------------------------------------------------36
2.9.1 研究背景----------------------------------------------------------------37
2.9.2 研究動機----------------------------------------------------------------37
2.9.3 研究目的----------------------------------------------------------------39

第三章、實驗步驟與方法--------------------------------------------------40
3.1合金設計---------------------------------------------------------------43
3.2合金鑄造---------------------------------------------------------------43
3.3 T6熱處理--------------------------------------------------------------------45
3.4 熱暴露測試-----------------------------------------------------------------45
3.5 Jominy End Quench終端淬火測試--------------------------------------47
3.6微結構觀察與分析---------------------------------------------------------49
3.6.1 光學顯微鏡(Optical Microscopy, OM)----------------------------49
3.6.2 影像分析(Image Analytics)-----------------------------------------49
3.6.3 電子微探儀(Electron probe X-ray microanalysis, EPMA)-----50
3.6.4 FIB聚焦離子束(Focused Ion Beam, FIB) -----------------------50
3.6.5 導電度量測(Electrical Conductivity, %IACS)-------------------51
3.6.6 掃瞄式電子顯微鏡(Scanning Electron Microscope, SEM)-----51
3.6.7 穿透式電子顯微鏡(Transmission electron microscope, TEM)-52
3.7機械性質分析---------------------------------------------------------------53
3.7.1硬度試驗-----------------------------------------------------------------53
3.7.2拉伸試驗-----------------------------------------------------------------53

第四章、結果與討論--------------------------------------------------------55
4.1微量鈹與鈧對Al-7Si-0.6Mg合金微結構之影響------------------56
4.1.1微結構分析--------------------------------------------------------------56
4.1.2 EPMA分析--------------------------------------------------------------58
4.1.3 T6態微結構-------------------------------------------------------------61
4.1.4 熱暴態微結構分析----------------------------------------------------63
4.1.5影像分析-----------------------------------------------------------------65
4.1.6 TEM微結構分析-------------------------------------------------------67
4.1.6.1 T6態微結構分析--------------------------------------------------67
4.1.6.2 熱暴露微結構分析-----------------------------------------------69
4.1.7導電度分析--------------------------------------------------------------73
4.1.8機械性質試驗-----------------------------------------------------------75
4.1.8.1 硬度測試---------------------------------------------------75

4.1.8.2 拉伸性質測試-----------------------------------------------------77
4.1.8.2.1破斷面SEM分析---------------------------------------------77
4.1.8.2.2拉伸強度觀察-------------------------------------------------81
4.1.8.3高溫熱暴露測試---------------------------------------------------84
4.1.8.3.1 硬度測試------------------------------------------------------84
4.1.8.3.2 拉伸測試------------------------------------------------------86
4.1.9 結論----------------------------------------------------------------------88
4.2微量鈹與鈧對Al-7Si-0.6Mg合金淬火敏感性之影響----------------89
4.2.1 Jominy End Quench終端淬火速率---------------------------------89
4.2.2 Jominy End Quench終端淬火硬度測試---------------------------91
4.2.3 金相微結構分析-------------------------------------------------------93
4.2.4 TEM微結構分析-------------------------------------------------------97
4.2.5導電度測試------------------------------------------------------------102
4.2.6結論---------------------------------------------------------------------105

第五章、總結論--------------------------------------------------------------106

第六章、未來研究方向---------------------------------------------------108

References--------------------------------------------------------------------109
參考文獻 References

1. X.Y. Yu,W.Q. Xing, M. Ding, “Ultrasonic semi–solid coating soldering 6061 aluminum alloys with Sn–Pb–Zn alloys”, Ultrasonics Sonochemistry, Vol.231, pp.50–57.(2016)
2. John E. Hatch: Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, pp.351–359.(1984)
3. John E. Hatch: Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, Ohio, pp.320–350. (1984)
4. 劉國雄、葉均蔚:高強力鋁合金之熱處理–析出硬化,金屬熱處理, 14期, pp.1–28. (1985)
5. D. Apelian, S. Shivkumar and G. Sigworth, “Fundamental aspects of heat treatment of cast Al–Si–Mg alloys”, American Foundry Society Trans., Vol.89–137, pp.727–743.(1989)
6. F.A. Davis, T.S. Eyre, “The effect of silicon content and morphology on the wear of aluminium–silicon alloys under dry and lubricated sliding conditions”, Tribology International, Vol.27(1), pp.171–181. (1994)
7. L. Kyuhong, N.K. Yong, “Effects of eutectic silicon particles on tensile properties and fracture toughness of A356 aluminum alloys fabricated by low–pressure–casting, casting–forging, and squeeze–casting processes”, Journal of Alloys and Compounds, Vol.461, pp.532–541.(2008)
8. H.K. Yi, D. Zhang, “Morphologies of Si phase and La–rich phase in as–cast hypereutectic Al–Si–xLa alloys”, Materials Letters, Vol.57, pp.2523–2529.(2003)
9. J.E. Gruzleski, B.M. Closset, “The treatment of liquid aluminum–silicon alloys”, The American Foundrymen′s Society Inc., Des Plaines, Illinois, USA, pp.13–20.(1990)
10. Y. H. Tan, S. L. Lee and Y. L. Lin, “Effects of Be and Fe content on plane strainfracture toughness in A357 alloys”, Metallurgical and Materials Transactions A, Vol.26, pp.2937–2945.(1995)
11. L.A. Bendersky, A.J. Mcalister, F.S. Biancaniello, “Phase transformation during annealing of rapidly solidified Al–rich Al–Fe–Si alloys”, Metallurgical and Materials Transactions A, Vol.19, pp.2893–2900.(1998)
12. D.A. Granger, R.R. Sawtell, M.M. Kersker, “Effect of beryllium on the properties of A357.0 castings”, AFS Transactions, Vol. 92, pp.579–586.(1984)
13. J.E. Hatch, “Aluminum: properties and physical metallurgy”, ASM International, Metals Park, Ohio, pp.320–377.(1984)
14. J.R. Davis, “Aluminum and aluminum alloys”, ASM International Materials Park, Ohio, pp.199–228.(1994)
15. J.E. Gruzleski, B.M. Closset, “The treatment of liquid aluminum–silicon alloys”, The American Foundry Society Inc, Des Plaines, Illinois, USA, pp.25–228.(1990)
16. E.R. Wang, X.D. Hui, S.S. Wang, Y.F. Zhao, G.L. Chen, “Improved mechanical properties in cast Al–Si alloys by combined alloying of Fe and Cu”, Materials Science and Engineering A, Vol.527, pp.7878–7884.(2010)
17. A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, “Effect of grain refining and Sr–modification interactions on the impact toughness of Al–Si–Mg cast alloys”, Materials and Design, Vol.56, pp.264–273.(2014)
18. N. Handisk, J.E. Gruzleski, D. Argo, “Sodium, strontium, and antimony interactions during modification of AS7G03(A356) alloys”, AFS Transactions, Vol.95, pp.31–38.(1987)
19. B. Closset and J.E. Gruzleski, “Structure and properties of hypoeutectic Al–Si–Mg alloys modified with pure strontium”, Metallurgical and Materials Transactions A, Vol.13, pp.945–951.(1982)
20. C.L. Yang, Y.B. Li, B. Dang, H.B. Lu, F. Liu, “Effects of cooling rate on solution heat treatment of as–cast A356 alloy”, Transactions of Nonferrous Metals Society of China, Vol. 25,pp. 3189–3196.(2015)
21. M.J. Roy, D.M. Maijer, “Response of A356 to warm rotary forming and subsequent T6 heat treatment”, Materials Science and Engineering A, Vol.611, pp.223–233.(2014)
22. R. Chen, Q. Xu, Z. Jia, B. Liu, “Precipitation behavior and hardening effects of Si–containing dispersoids in Al–7Si–Mg alloy during solution treatment”, Materials and Design, Vol.90,pp.1059–1068.(2016)
23. N.D. Alexopoulos, A. Stylianos, “Impact mechanical behaviour of Al–7Si–Mg (A357) cast aluminum alloy”, Materials Science and Engineering A, Vol.528, pp.6303–6312.(2011)
24. U. Patakham, C. Limmaneevichitr, “Effects of iron on intermetallic compound formation in scandium modified Al–Si–Mg Alloys”, Journal of Alloys and Compounds, Vol.616, pp.198–207.(2014)
25. S. Jin, W.Yang, F. Gao, D.Watson, Z. Fan, “Effect of iron on the microstructure and mechanical property of Al–Mg–Si–Mn and Al–Mg–Si die cast alloys”, Materials Science and Engineering A, Vol. 564, pp.130–139.(2013)
26. National Research Council, “U.S. Supersonic Commercial Aircraft : Assessing NASA′s High Speed Research Program”, National Academy Press, pp.32–40.( 1997)
27. H.C. Fang, H. Chao, K.H. Chen, “Effect of recrystallization on intergranular fracture and corrosion of Al–Zn–Mg–Cu–Zr alloy”, Journal of Alloys and Compounds, Vol.622, pp.166–173.(2015)
28. A.R. Farkoosh, X.G. Chen, M. Pekguleryuz, “Dispersoid strengthening of a high temperature Al–Si–Cu–Mg alloy via Mo addition”, Materials Science and Engineering A, Vol.620, pp.181–189. (2015)
29. X.Y. Liu, Q.L. Pan, L.Y. Zheng, Q. Rong, F. Gao, M.X. Li, Y.M. Bai, “Effect of aging temper on the thermal stability of Al–Cu–Mg–Ag heat–resistant alloy”, Materials and Design, Vol.46, pp.360–365. (2013)
30. Y.L. Deng, L. Wan, Y. Zhang, X.M. Zhang, “Influence of Mg content on quench sensitivity of Al–Zn–Mg–Cu aluminum alloys”, Journal of Alloys and Compounds Vol.509, pp.4636–4642.(2011)
31. A. Eshaghi, H.M. Ghasemi, J. Rassizadehghani, “Effect of heat treatment on microstructure and wear behavior of Al–Si alloys with various iron contents”, Materials and Design Vol.32, pp.1520–1525. (2011)
32. M. Elmadagli, T. Perry, A.T. Alpas, “A parametric study of the relationship between microstructure and wear resistance of Al–Si alloys”, Wear, Vol.262, pp.79–92.(2007)
33. C.M. Estey, S.L. Cockcroft, D.M. Maijer, C. Hermesmann, “Constitutive behaviour of A356 during the quenching operation”, Materials Science and Engineering A, Vol.383, pp.245–251.(2004)
34. S. Shivkumar, S. Ricci, Jr., D. Apelian, “Influence of Solution Parameters and Simplified Supersaturation Treatments on Tensile Properties of A356 Alloy”, AFS Transaction, Vol.98, pp.913–922. (1990)
35. S. Shivkumar, S. Ricci, J.B. Steenhoff, D. Apelian, “An Experimental Study on Optimize the Heat Treatment of A356 Alloy”, AFS Transaction, Vol.138, pp.791–810.(1989)
36. M. Tiryakioğlu, R.T. Shuey, “Quench Sensitivity of an Al–7 Pct Si–0.6 Pct Mg Alloy: characterization and modeling”, Metallurgical and Materials Transactions B, Vol.38(4), pp.575–582.(2007)
37. H. Suzuki, M. Kanno, Y. Shirashi, “Effects of excess magnesium or silicon on the two–step aging behavior of Al–Mg2Si alloys”, Journal of Japan institute of Light Metals, Vol.29(5), pp.197–203.(1979)
38. D.S. Sauder, B.A. Parker, J.R. Griffiths; J. Australian Inst. of Metals,Vol.20,pp.33–38.(1979)
39. C.D. Marioara, S.J. Andersen, J. Jansen, H.W. Zandbergen, “The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy”, Acta Materialia, Vol.51, pp.789–796. (2003)
40. M. Murayama, K. Hono, M. Saga, M. Kikuchi, “Atom probe studies on the early stages of precipitation in Al–Mg–Si alloys”, Metallurgical and Materials Transactions A, Vol.250, pp.127–132. (1998)
41. L.F. Mondolfo, “Aluminum alloys : structure and properties”, London, Butterworth’s, Ltd., pp.534–578.(1976)
42. V. Fallah, A. Korinek, B. Raeisinia, M. Gallerneault, S. Esmaeili, “Early–stage precipitation phenomena and composition–dependent hardening in Al–Mg– Si–(Cu) alloys”, Materials Science Forum, Vol.794, pp.933–938.( 2014)
43. S. Pogatscher, H. Antrekowitsch, H. Leitner, D. Pöschmann, Z. Zhang, P. Uggowitzer, “Influence of interrupted quenching on artificial aging of Al–Mg–Si alloys”, Acta Materialia, Vol.60, pp.4496–4505.(2012)
44. Y. Aruga, M. Kozuka, Y. Takaki, T. Sato, “Evaluation of solute clusters associated with bake–hardening response in isothermal aged Al–Mg–Si alloys using a three–dimensional atom probe”, Metallurgical and Materials Transactions A, Vol.45, pp.5906–5913. (2014)
45. V. Fallah, A. Korinek, N. Ofori–Opoku, B. Raeisinia, M. Gallerneault, “Atomic–scale pathway of early–stage precipitation in Al–Mg–Si alloys”, Acta Materialia, Vol.82, pp.457–467.(2015)
46. N. Provatasc, S.E. Sjölander, S. Seifeddine, “The heat treatment of Al–Si–Cu–Mg casting alloys”, Journal of Materials Processing Technology, Vol.210, pp.1249–1259.(2010)
47. M. Takeda, F. Ohkubo, T. Shirai, K. Fukui, “Stability of metastable phases and microstructures in the ageing process of Al–Mg–Si ternary alloys”, Journal of Materials Science, Vol.33, pp. 2385–2390.(1998)
48. K. Matsuda, S. Tada, S. Ikeno, A. Kamio, “Crystal system of rod–shaped precipitates in an Al–1.0mass%Mg2Si–0.4mass%Si alloy”,  Scripta Metallurgica et Materialia, Vol.32(8), pp.1175–1180.(1995)
49. M. Murayama, K. Hono, M. Saga, M. Kikuchi, “Atom probe studies on the early stages of precipitation in Al–Mg–Si”, Materials Science and Engineering A,Vol.250, pp.127–132.(1998)
50. A. Gaber, M.A. Gaffar, M.S. Mostafa, E.F. AboZeid, “Precipitation kinetics of Al–1.12 Mg2Si–0.35Si and Al–1.07Mg2Si–0.33Cu alloys”, Journal of Alloys and Compounds, Vol.429, pp.167–175.(2007)
51. Y. Ohmori, L.C. Doan, K. Nakai, “Ageing Processes in Al–Mg–Si Alloys during Continuous Heating”, Materials Transactions, Vol.43, pp.246–255.(2002)
52. H. Zhang, Y. Wang, S.L. Shang, C. Ravi, C. Wolverton, L.Q. Chen, Z.K. Liu, “Solvus boundaries of (meta)stable phases in the Al–Mg–Si system: First–principles phonon calculations and thermodynamic modeling”, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, Vol.34, pp. 20–25.(2010)
53. J.A. Taylora, “Iron–containing intermetallic phases in Al–Si based casting alloys”, Procedia Materials Science, pp.19 –33.(2012)
54. L.F. Mondolfo, “Aluminum alloys: structure and properties,” London: Butterworth, pp.760.(1976)
55. L. Anantha Narayanan, F.H. Samuel, J.E. Gruzleski, ”Crystallization behavior of containing intermetallic compounds in 319 aluminum alloy,” Metallurgical and materials Transactions A, Vol.25, pp.1761–1773.(1994)
56. A.M. Samuel, F.H. Samuel,” Effect of alloying elements and dendrite arm spacing on the microstructure and hardness of an Al–Si–Cu–Mg–Fe–Mn (380) aluminium die–casting alloy,” Journal of Materials Science, Vol.30, pp.1698–1708.(1995)
57. M.M. Buarzaiga, S.J. Thorpe, “Corrosion behavior of as–cast, silicon carbide particulate–aluminum alloy metal–matrix composites”, Corrosion, Vol.50, pp.176–185.(1994)
58. 加藤銳次, “Al–Si系合金鑄物的破壞過程和鐵系化合物形狀的關係”, 輕金屬Vol.45, pp.9–14.(1995)
59. J.G. Barlock, L.F. Mondolfo: Z. Metallkd. Vol.66, pp.605. (1975)
60. L. Anantha Narayanan, F.H. Samuel, J.E. Gruzleski, “Crystallization behavior of containing intermetallic compounds in 319 aluminum alloy”, Metallurgical and Materials Transactions A, Vol.25, pp.1761–1773.(1994)
61. S. Murali, K.S. Raman and K.S.S. Murthy, “Effect of trace additions (Be, Cr, Mn and Co) on the mechanical properties and fracture toughness of Fe–containing Al–7Si–0.3Mg Alloy”, Cast Metals, Vol.6, pp.189–198. (1994)
62. L.F. Mondolo, “Aluminum alloys: structure and properties”, London, Butter wordths and Co., Ltd. pp.534–536.(1976)
63. J. Czikel , W.D. Pfeiffer , G. Sabth, B. Stcinhufl , Aluminum, Vol.61, pp.917.(1985)
64. W. Bonsanck, ASTM Bulletin 117(Aug 1942) p.45, ASTM Bulletin 124(Oct 1943),p.41
65. L.F. Mondolo, “Aluminum alloys: structure and properties”, London, Butter wordths and Co., Ltd. pp.760.(1976)
66. C.Y. Yang, S.L. Lee, C.K. Lee and J.C. Lin, “Effects of Be and Fe on the mechanical and corrosion behaviors of A357alloys”, Materials Chemistry and Physics, Vol.93, pp.412– 495.(2005)
67. P.S Wang, S.L. Lee ,C.Y. Yang and J.C. Lin, “Effect of beryllium an d non–equilibrium heat treatment on the mechanical properties of B319.0 alloy with 1.0%Fe”, Materials Science and Technology, Vol. 20, pp.195–202.(2004)
68. Y.H. Tan, S.L. Lee and Y.L. Lin, “Effects of Be and Fe content on plane strain fracture toughness in A357 alloys”, Metallurgical Transactions A, Vol.26, pp.2937–2945.(1995)
69. S. Murali, K.S. Raman and K.S.S. Murthy,“Effect of trace additions (Be, Cr, Mn and Co) on the mechanical properties and fracture toughness of Fe–containing Al–7Si–0.3Mg Alloy,” Cast Metals, Vol. 6 pp.189–198.(1994)
70. P.S. Levy, H.D. Roth, P.M. Hwang and T.E. Powers, “Beryllium and lung cancer: a reanalysis of a NIOSH cohort mortality study”, Inhal Toxicol, pp.14–15.(2002)
71. J.G. Kaufman and E.L. Rooy, “Aluminum alloy casting properties, processes, and applications”, AFS&ASM, p.15. (2004)
72. J. Røyset, N. Ryum, “Scandium in aluminium alloys,” International materials review, Vol.50, pp.19–44. (2005)
73. V. G. Davydov, T. D. Rostova, V.V. Zakharov, Y.A. Filatov, V.I. Yelagin, “Scientific principles of making an alloying addition of scandium to aluminum alloys”, Materials Science and Engineering A, Vol.280, pp.30–36.(2000)
74. K. Yu, W. Li, S. Li and J. Zhao, “Mechanical properties and microstructure of aluminum alloy 2618 with Al3(Sc,Zr) phases”, Materials Science and Engineering A, Vol.38, pp.88–93.(2004)
75. V. Ocenasek, M. Slamova, “Resistance to recrystallization due to Sc and Zr addition to Al–Mg alloys”, Materials Characterization, Vol.47, pp.157– 162.(2001)
76. L. K. Lamikov and G. V. Samsonov, “Soviet Non–Ferrous Metals Res.”(USSR), Vol.9, pp.79.(1964)
77. K. A. Gschneidner, F. W. Calderwood, Bull. Alloy Phase Diag. 10, pp. 34.(1989)
78. R.W. Cahn, P. Haasen, Physical Metallurgy, 4th ed., Vol. I, North–Holland, Chapter 4, pp.205–370.(1996)
79. A.F. Norman, P.B. Prangrell, R.S. Mcemen, “The solidification behavior of dilute aluminum–scandium alloys”, Acta Materialia, Vol.46, pp.5715–5732.(1998)
80. K.B. Hyde, A.F. Norman, P.B. Pragnell, “The Effect of Cooling Rate on the Morphology of Primary Al3Sc Intermetallic Particles in Al–Sc Alloys”, Acta Materialia, Vol.49, pp.1327–1337.(2001)
81. G.M. Novotny, A.J. Ardell, “Precipitation of Al3Sc in binary Al–Sc alloys”, Materials Science and Engineering A, Vol.318, pp.144–154. (2001)
82. E. A. Marquis, “D.N. Seidman, Nanoscale Structural Evolution of Al3Sc”, Acta Materialia, Vol.49, pp.1909–1919.(2001)
83. D.N. Seidman, E.A. Marquis, D.C. Dunand, “Precipitation strengthening at ambient and elevated temperatures of heat–treatable Al(Sc) alloys”, Acta Materialia, Vol.50, pp.4021– 4035.(2002)
84. “Applications of Scandium In Al–Sc Alloys”,
http://www/scandium.org/Sc–Al.html
85. I.J. Polmear, G. Pons, Y. Barbaux, H. Octor, C. Sanchez, A.J. Morton, W.E. Borbidge, S. Rogers, “After Concorde : Evaluation of Creep Resistant Al–Cu–Mg–Ag Alloys.”, Materials Science and Technology Vol.15, pp.861–868.(1999)
86. O. Beffort, C. Solenthaler, P.J. Uggowitzer, M.O. Speidel, “High Toughness and High Strength Spray–Deposited AlCuMgAg–Base Alloys for Use at Moderately Elevated Temperatures”, Materials Science and Engineering A ,Vol.191, pp.121–134.(1995)
87. S.P. Ringer, W. Yeung, B.C. Muddle, I.J. Polmear, “Precipitate Stability in Al–Cu–Mg–Ag Alloys Aged at High Temperatures”, Acta Metallurgica et Materialia, Vol.42, pp.1715–1725.(1994)
88. J. Man, L. Jing, S.G. Jie, “The effects of Cu addition on the microstructure and thermal stability of an Al–Mg–Si alloy”, Journal of Alloys and Compounds, Vol.304, pp.521–526.(2006)
89. Z. Ma, E. Samuel, A.M.A. Mohamed, A.M. Samuel, F.H. Samuel, H.W. Doty, “Influence of aging treatments and alloying additives on the hardness of Al–11Si–2.5Cu–Mg alloys”, Materials and Design Vol.31, pp.3791–3803. (2010)
90. O.E.I Sebaie, A.M. Samuel, F.H. Samuel, H.W. Doty, “The effects of mischmetal, cooling rate and heat treatment on the hardness of A319.1, A356.2 and A413.1 Al–Si casting alloys”, Materials Science and Engineering A, Vol.486, pp.241–252.(2008)
91. A. Hekmat–Ardakan, X. Liu, F. Ajersch, X.G. Chen. “Wear behaviour of hypereutectic Al–17.0Si–4.5Cu–Mg casting alloys with variable Mg contents”, Wear, Vol.269, pp.684–692.(2010)
92. Morere, Ehrstrom J, P.J. Gregson, “Microstructural effects on fraxture toughness in AA7010 plate”, Metallurgical and Materials Transactions A, Vol.31, pp.2503–2515.(2000)
93. D.S. Thompson, B.S. Subramanya, S.A. Levy, “Quench rate effects in Al–Zn–Mg–Cu alloys”, Metallurgical Transactions, Vol.2, pp.1149–1160.(1971)
94. D. Emadi, “Optimal Heat Treatment of A356.2 Alloy. Light Metals”, TMS (The Minerals, Metals and Materials Society), pp.983–989.(2003)
95. D.L. Zhang, L. Zheng, “The Quench Sensitivity of Cast Al–7Wt PctSi–0.4Wt Pct Mg Alloy”, Metallurgical and Materials Transactions A,Vol.27,pp.3983–3991.(1996)
96. V.I. Pokhmurskii, I.M. Zin, V.A. Vynar, L.M. Bily, “Contradictory Effect of Chromate Inhibitor on Corrosive Wear of Aluminium Alloy”, Corrosion Science, Vol.53, pp.904–908.(2011)
97. W.B. Bouaeshi, D.Y. Li, “Effects of Y2O3 Addition on Microstructure, Mechanical Properties, Electrochemical Behavior, and Resistance to Corrosive Wear of Aluminum”, Tribology International, Vol.40, pp.188–199.(2007)
98. D.R. Arnott, B.R.W. Hinton, N.E. Ryan, “Cationic Film-Forming Inhibitors for the Corrosion Protection of AA 7075 Aluminum Alloy in Chloride Solutions”, Materials Performance, Vol.26, pp.42–50.(1987)
99. D. R. Arnott, B. R. W. Hinton, N. E.Ryan, “Cationic-Film-Forming Inhibitors for the Protection of the AA 7075 Aluminum Alloy against Corrosion in Aqueous Chloride Solution”, Corrosion, Vol.45, pp.12–18.(1989)
100. S.L. Lee, H.H. Liang, “The Structure and Hardness of Electroless Ni-Mo-P Deposits”, Plating and Surface Finishing, Vol.79, pp.56–59.(1992)
101. S.L. Lee, “Precipitation and Recrystallization in TwoAl-4.5% Mg-Mn Alloys”, Interational Joural of Materials and Product Technology, Vol.8 pp.71–77(1993)
102. B.H. Yan, S.L. Lee, S.S. Chang, “Machinability of Hype-reutectic Al-Si alloy Fabricated by Rapid Solidification Process”, Journal of Japan Institute of Light Metals, Vol.43, pp.102–106(1993)
103. C.C. Chang, C.C. Chan, S.L. Lee, “The Effect of Alloy El-ements on Micro-structure of Al-5Mg Alloys”, Chinese Journal of Material Science, Vol.5, pp.218–222.(1993)
104. F. Fazeli, C.W. Sinclair, T. Bastow, “The role of excess vacancies on precipitation kinetics in an Al-Mg-Sc alloy”, Metallurgical and Materials Transactions A,Vol.39, pp.2297–2305.(2008)
105. H. Shoichi, S. Tatsuo, K. Akihiko, “Effects of Mg addition on the kinetics of low-temperature precipitation in Al–Li–Cu–Ag–Zr alloys”, Materials Science and Engineering A, Vol.242, pp.195-201.(1998)
指導教授 李勝隆 審核日期 2016-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明