博碩士論文 101383004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.221.211.66
姓名 江昭慶(Chao- Ching Chiang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 光電化學效應抑制P-型多孔矽形成之研究
(The Inhibition of P-type Porous Silicon Formation by Photo- electrochemistry)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,多孔矽研究和相關應用廣泛被應用到半導體製程、薄膜太陽能電池、藥物檢驗和燃料電池。因此,多孔矽的研究價值被廣泛認可。在研究中,我們使用的低功率雷射633、830、1064和1310nm,在氫氟酸(HF)溶液蝕刻P型矽的電化學製程,同時照射雷射進行了研究。雷射功率為幾個毫瓦照射,電化學蝕刻速率為100、200mA,蝕刻時間10、30分鐘,控制奈米級的多孔矽形成,已成功的被使用。同時研究中意外地發現,使用雷射照射於晶片表面,此時電化學蝕刻速率會降低。多孔矽的發光特性,通過光激發光頻譜(He -Cd 325 nm)雷射被激發,多孔矽的光譜並於顯微鏡中捕獲。PL光譜微觀分佈出現在多孔矽形成的過程光束強度分佈,發光峰值為單個PL峰,已確認雷射照射區的PL峰值,對應於室溫下紅色發光的1.94電子伏特。多孔矽呈現均勻尺寸的量子點,已於TEM的圖像證實。上述電化學反應經雷射功率大小照射,於晶片表面進行能量變化,與多孔矽的形成和電化學抑制反應進行控制,多孔矽具有奈米晶體的量子點結構。在雷射照射過程上,因為電子數目從襯底被激發,使得多孔矽層的形成有很大的影響,該圖像於較強度的紫外燈(365nm)照射下被捕獲。雷射抑制提供一個在奈米尺度的多孔矽層厚度良好的控制,研究表明,多孔矽的奈米顆粒和厚度是可以通過蝕刻期間的雷射光功率照射進行控制,是為一種可行性的技術。
摘要(英) In recent years, researches on porous silicon (PS) and related applications are widely applied to semiconductor industry, thin film solar cells, drug testing and fuel cell. So, the research value of porous silicon is widely acknowledged. In study, we used the effect of low power laser 633, 830, 1064 and 1310nm irradiation on the electrochemical etched of p-type silicon in hydrofluoric (HF) acid solution has been investigated. The laser beam power is several mW with electrochemical etched rate was 100 and 200mA for 10 and 30 minutes of etching times had successfully employed to control the formation of porous silicon of good nano-scale. At the same time research accidentally discovered that the etching rate would decrease use laser was synchronously shined on the surface of the wafer. The emission characteristics of porous silicon was excited by Photoluminescence (He -Cd 325 nm), and the spectra were acquired with an optical microscope. The microscopic distribution of the PL spectra appeared in the beam intensity distribution during the formation process. PL peak shows a single PL peak at 1.94 eV corresponding to red emission at room temperature. The single PL peak confirms the presence of uniform sized quantum dots (QDs) in laser irradiation area samples by TEM image. On the laser-irradiated surface, the electrochemical reaction is changed by the laser power due to the energy in the wafer, while porous silicon formation with electrochemical suppressing reaction is controlled. It has a QDs structure of nano-crystals. The laser irradiation in anodizing exercises a great influence on the formation of porous silicon layer because of the number of electrons being excited from the substrate. The laser inhibition provides a good control of the thickness of the porous silicon layer at the nano-scale. The image has been captured during the High intensity UV lamp (365nm). Nano-particles and thickness of porous silicon can be controlled by controlling laser power during Etching. The studies have shown that laser irradiation area of porous silicon layer is considered to be a feasible technology with thickness control.
關鍵字(中) ★ 多孔矽
★ 光電化學
★ 奈米晶
關鍵字(英) ★ porous silicon
★ Photo- electrochemistry
★ nano-crystals
論文目次 中文摘要 ……………………………………………………………………… i
英文摘要 ……………………………………………………………………… ii
誌謝 ……………………………………………………………………… iii
目錄 ……………………………………………………………………… iv
圖目錄 ……………………………………………………………………… vii
表目錄 ……………………………………………………………………… xv
第一章 緒論………………………………………………………………… 1
1-1 研究背景…………………………………………………………… 1
1-2 多孔矽製程………………………………………………………… 3
1-2-1 乾式蝕刻…………………………………………………………… 3
1-2-2 濕式蝕刻…………………………………………………………… 5
1-2-3 電化學蝕刻………………………………………………………… 6
1-3 多孔矽應用………………………………………………………… 7
1-4 研究動機與目標…………………………………………… 15
第二章 文獻回顧…………………………………………………………… 17
2-1 多孔矽理論模型…………………………………………………… 18
2-1-1 量子模型 (The Quantum Model)………………………………… 18
2-1-2 擴散限制模型 (The Diffusion - Limited Model)……………… 19
2-1-3 貝爾模型 (The Beale Model) …………………………………… 20
2-2 多孔矽形成機制…………………………………………………… 22
2-3 多孔矽電化學蝕刻電流-電壓(I-V)特性曲線…………………… 26
2-4 雷射特性…………………………………………………………… 31
2-5 雷射光源…………………………………………………………… 34
2-6 光電效應…………………………………………………………… 39
2-6-1 矽光電吸收模型與蝕刻抑制……………………………………… 41
2-6-2 多孔矽形成之轉換………………………………………………… 44
2-6-3 多孔矽發光機制-量子侷限效應………………………………… 47
第三章 實驗方法…………………………………………………………… 52
3-1 試片整備與清洗流程……………………………………………… 52
3-2 實驗步驟…………………………………………………………… 55
3-3 實驗系統與分析儀器……………………………………………… 58
3-3-1 電化學蝕刻系統…………………………………………………… 58
3-3-2 雷射源與光學路徑架設系統……………………………………… 60
3-3-3 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) …………………………………………… 62
3-3-4 高解析度穿透式電子顯微鏡 (High Definition Transmission Electron Microscope, HR-TEM) ………………………………… 63
3-3-5 光激發螢光頻譜 (Photoluminescence, PL) …………………… 64
3-3-6 原子力顯微鏡 (Atomic Force Microscope, AFM) ……………… 66
3-3-7 積分球 (Integrating Sphere) …………………………………… 68
3-3-8 高強度紫外燈 (Hight Intensity UV Lamps)……………………… 71
3-3-9 螢光顯微鏡 (Fluorescence Microscope) ………………………… 71
第四章 結果與討論………………………………………………………… 74
4-1 633nm氦氖雷射效應……………………………………………… 74
4-1-1 雷射照射區多孔矽表面與剖面結構形貌………………………… 75
4-1-2 使用AFM觀察多孔矽之表面粗糙度…………………………… 91
4-1-3 雷射照射多孔矽之光激螢光光譜(PL)強度……………………… 96
4-2 830nm 近紅外雷射效應………………………………………… 100
4-2-1 雷射照射區多孔矽表面與剖面結構形貌………………………… 100
4-2-2 使用AFM觀察多孔矽之表面粗糙度…………………………… 111
4-2-3 雷射照射多孔矽之光激螢光光譜(PL)強度……………………… 115
4-3 高斯效應對於多孔矽形成之梯度現象(TZPS)影響……………… 121
4-4 電流效應…………………………………………………………… 128
4-5 Extrinsic Absorption 效應於重摻雜晶片多孔矽之光激發光光譜(PL)強度…………………………………………………………… 132
4-6 1064nm Nd-YAG雷射效應………………………………………………… 142
4-6-1 雷射照射區多孔矽剖面結構形貌……………………………………… 142
4-6-2 使用AFM觀察多孔矽之表面粗糙度…………………………………… 151
4-6-3 雷射照射多孔矽之光激螢光光譜(PL)強度……………………… 155
4-7 1310nm 紅外雷射效應…………………………………………………………… 161
4-7-1 雷射照射區多孔矽剖面結構形貌………………………………………… 162
4-7-2 使用AFM觀察多孔矽之表面粗糙度……………………………………… 168
4-7-3 使用AFM觀察Free carrier absorption 抑制蝕刻現象………… 173
4-7-4 雷射照射多孔矽之光激螢光光譜(PL)強度……………………… 177
4-8 多孔矽孔隙率計算分析…………………………………………………… 184
4-8-1 633nm雷射孔隙率量測結果討論………………………………… 186
4-8-2 830nm雷射孔隙率量測結果討論………………………………… 191
4-8-3 1064nm雷射孔隙率量測結果討論……………………………… 196
4-8-4 1310nm雷射孔隙率量測結果討論……………………………… 199
4-9 多孔矽雷射照射區光激發光現象………………………………… 201
4-9-1 633nm雷射多孔矽發光…………………………………………………… 201
4-9-2 830nm雷射多孔矽發光…………………………………………………… 204
4-9-3 1064、1030nm雷射多孔矽發光………………………………… 206
4-9-4 830nm雷射多孔矽發光波段紅移………………………………… 213
4-10 多孔矽光通量分析………………………………………………………… 214
4-11 選用氪離子雷射(799.1nm)-大面積2 inch 多孔矽光激發… 220
第五章 結論與未來展望…………………………………………………… 231
5-1 結論………………………………………………………………………… 231
5-2 未來展望………………………………………………………………… 234
參考文獻 ………………………………………………………………………………… 235
附錄一 發表著作……………………………………………………………… 243
參考文獻 [1]A. Uhlir, "Electrolytic shaping of germanium and silicon," Bell System Technical Journal, vol. 35, pp. 333-347, 1956.
[2]D. Turner, "On the mechanism of chemically etching germanium and silicon," Journal of the electrochemical Society, vol. 107, pp. 810-816, 1960.
[3]Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi, "Formation and properties of porous silicon and its application," Journal of the Electrochemical Society, vol. 122, pp. 1351-1355, 1975.
[4]L. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Applied Physics Letters, vol. 57, pp. 1046-1048, 1990.
[5]I. Sagnes, A. Halimaoui, G. Vincent, and P. Badoz, "Optical absorption evidence of a quantum size effect in porous silicon," Applied physics letters, vol. 62, pp. 1155-1157, 1993.
[6]V. Lehmann and U. Gösele, "Porous silicon formation: a quantum wire effect," Applied Physics Letters, vol. 58, pp. 856-858, 1991.
[7]T. Osaka, K. Ogasawara, and S. Nakahara, "Classification of the Pore Structure of n‐Type Silicon and Its Microstructure," Journal of The Electrochemical Society, vol. 144, pp. 3226-3237, 1997.
[8]Z. Gaburro, N. Daldosso, and L. Pavesi, "Porous silicon," Encyclopedia of Condensed Matter Physics, pp. 391-401, 2005.
[9]R. Herino, G. Bomchil, K. Barla, C. Bertrand, and J. Ginoux, "Porosity and pore size distributions of porous silicon layers," Journal of the electrochemical society, vol. 134, pp. 1994-2000, 1987.
[10]J.-H. Kwon, S.-H. Lee, and B.-K. Ju, "Thin film silicon substrate formation using electrochemical anodic etching method," Surface Engineering, vol. 25, pp. 603-605, 2009.
[11]K.-J. Chen, "The study of porous silicon thin-film transfer," 2011.
[12]M. Hajj-Hassan, M. Cheung, and V. P. Chodavarapu, "Ultra-thin porous silicon membranes fabricated using dry etching," Micro & Nano Letters, vol. 6, pp. 226-228, 2011.
[13]G. S. Oehrlein, "Reactive‐Ion Etching," Physics Today, vol. 39, pp. 26-33, 2008.
[14]A. Cullis, L. Canham, and P. Calcott, "The structural and luminescence properties of porous silicon," Journal of Applied Physics, vol. 82, pp. 909-965, 1997.
[15]P. Panek, M. Lipiński, and J. Dutkiewicz, "Texturization of multicrystalline silicon by wet chemical etching for silicon solar cells," Journal of Materials Science, vol. 40, pp. 1459-1463, 2005.
[16]M. Quirk and J. Serda, "Semiconductor manufacturing technology, " vol.1, Prentice Hall Upper Saddle River, NJ, 2001.
[17]V. Lehmann and H. Föll, "Formation mechanism and properties of electrochemically etched trenches in n‐type Silicon," Journal of the Electrochemical Society, vol. 137, pp. 653-659, 1990.
[18]R. Tsu, H. Shen, and M. Dutta, "Correlation of Raman and photoluminescence spectra of porous silicon," Applied physics letters, vol. 60, pp. 112-114, 1992.
[19]E. K. Propst and P. A. Kohl, "The electrochemical oxidation of silicon and formation of porous silicon in acetonitrile," Journal of The Electrochemical Society, vol. 141, pp. 1006-1013, 1994.
[20]P. Kumar and P. Huber, "Effect of etching parameter on pore size and porosity of electrochemically formed nanoporous silicon," Journal of Nanomaterials, vol. 2007, 2007.
[21]L. Canham, Handbook of porous silicon: Springer, 2014.
[22]O. Bisi, S. Ossicini, and L. Pavesi, "Porous silicon: a quantum sponge structure for silicon based optoelectronics," Surface science reports, vol. 38, pp. 1-126, 2000.
[23]M. Lannoo, C. Delerue, and G. Allan, "Screening in semiconductor nanocrystallites and its consequences for porous silicon," Physical review letters, vol. 74, pp. 3415, 1995.
[24]J. S. Shor and A. D. Kurtz, "Porous silicon carbide (SIC) semiconductor device," U.S Pantent No. 5569932, 1996.
[25]V. Lehmann, "Porous silicon-a new material for MEMS," in Micro Electro Mechanical Systems, 1996, MEMS′96, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. IEEE, The Ninth Annual International Workshop on, pp. 1-6, 1996.
[26]S. Stolyarova, S. Cherian, R. Raiteri, J. Zeravik, P. Skládal, and Y. Nemirovsky, "Composite porous silicon-crystalline silicon cantilevers for enhanced biosensing," Sensors and Actuators B: Chemical, vol. 131, pp. 509-515, 2008.
[27]J. H. Petermann, D. Zielke, J. Schmidt, F. Haase, E. G. Rojas, and R. Brendel, "19%‐efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using porous silicon," Progress in Photovoltaics: Research and Applications, vol. 20, pp. 1-5, 2012.
[28]S. Strehlke, D. Sarti, A. Krotkus, K. Grigoras, and C. Lévy-Clément, "The porous silicon emitter concept applied to multicrystalline silicon solar cells," Thin Solid Films, vol. 297, pp. 291-295, 1997.
[29]L. Canham, T. Cox, A. Loni, and A. Simons, "Progress towards silicon optoelectronics using porous silicon technology," Applied surface science, vol. 102, pp. 436-441, 1996.
[30]C.-C. Tu, Y.-N. Chou, H.-C. Hung, J. Wu, S. Jiang, and L. Y. Lin, "Fluorescent porous silicon biological probes with high quantum efficiency and stability," Optics express, vol. 22, pp. 29996-30003, 2014.
[31]J. Lasky, S. Stiffler, F. White, and J. Abernathey, "Silicon-on-insulator (SOI) by bonding and etch-back," in Electron Devices Meeting, 1985 International, pp. 684-687, 1985.
[32]A. M. Alwan and A. A. Jabbar, "Design and fabrication of nanostructures silicon photodiode," Modern Applied Science, vol. 5, pp106, 2011.
[33]S. E. Thompson and S. Parthasarathy, "Moore′s law: the future of Si microelectronics," materials today, vol. 9, pp. 20-25, 2006.
[34]U. Kasavajjula, C. Wang, and A. J. Appleby, "Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells," Journal of Power Sources, vol. 163, pp. 1003-1009, 2007.
[35]J. B. Kuo and K.-W. Su, CMOS VLSI engineering: silicon-on-insulator (SOI): Springer Science & Business Media, 2013.
[36]G. Celler and S. Cristoloveanu, "Frontiers of silicon-on-insulator," Journal of Applied Physics, vol. 93, pp. 4955-4978, 2003.
[37]M. Bruel, "Process for the production of thin semiconductor material films," U.S. Patent No. 5374564, 1994.
[38]N. Bartelt, W. Theis, and R. Tromp, "Ostwald ripening of two-dimensional islands on Si (001)," Physical Review B, vol. 54, pp. 11741, 1996.
[39]T. Yonehara and K. Sakaguchi, "Eltran®, Novel SOI Wafer Technology," JSAP International, vol. 4, pp. 10-16, 2001.
[40]V. Baranauskas, "Laser printing of photoluminescent porous silicon features," Applied surface science, vol. 154, pp. 605-609, 2000.
[41]A. Starovoitov and S. Bayliss, "Laser structuring of luminescent porous silicon during etching," Journal of Porous Materials, vol. 7, pp. 367-371, 2000.
[42]N. Yamamoto and H. Takai, "Formation mechanism of silicon based luminescence material using a photo chemical etching method," Thin solid films, vol. 388, pp. 138-142, 2001.
[43]V. Mahadevan and S. Sethuraman, "Nanomaterials and Nanosensors for Medical Applications," in Trends in Nanoscale Mechanics, ed: Springer, pp. 207-228, 2003.
[44]G. Lu, C. Wang, T. Yen, and X. Zhang, "Development and characterization of a silicon-based micro direct methanol fuel cell," Electrochimica Acta, vol. 49, pp. 821-828, 2004.
[45]H. Kim and N. Cho, "Morphological and nanostructural features of porous silicon prepared by electrochemical etching," Nanoscale research letters, vol. 7, pp. 1-8, 2012.
[46]K. A. Salman, K. Omar, and Z. Hassan, "The effect of etching time of porous silicon on solar cell performance," Superlattices and Microstructures, vol. 50, pp. 647-658, 2011.
[47]Y. Ohkura, J. M. Weisse, L. Cai, and X. Zheng, "Flash ignition of freestanding porous silicon films: effects of film thickness and porosity," Nano letters, vol. 13, pp. 5528-5533, 2013.
[48]N. M. Ahmed, Y. Al-Douri, A. M. Alwan, A. A. Jabbar, and G. E. Arif, "Characteristics of nanostructure silicon photodiode using laser assisted etching," Procedia Engineering, vol. 53, pp. 393-399, 2013.
[49]P. Ashton, H. Guo, J. Chen, and L. Canham, "Porous silicon drug-eluting particles," U.S Pantent No. 9023896, 2015.
[50]F. J. Maathuis and E. Diatloff, "Roles and functions of plant mineral nutrients," in Plant Mineral Nutrients, ed: Springer, pp. 1-21, 2013.
[51]C. Pickering, M. Beale, D. Robbins, P. Pearson, and R. Greef, "Optical studies of the structure of porous silicon films formed in p-type degenerate and non-degenerate silicon," Journal of Physics C: Solid State Physics, vol. 17, pp. 6535, 1984.
[52]L. Cao, T. P. Price, M. Weiss, and D. Gao, "Super water-and oil-repellent surfaces on intrinsically hydrophilic and oleophilic porous silicon films," Langmuir, vol. 24, pp. 1640-1643, 2008.
[53]A. Ben-Nairn, "Hydrophobic interactions," New York: Plenum, vol. 3, pp. 1, 1980.
[54]A. Marmur, "The lotus effect: superhydrophobicity and metastability," Langmuir, vol. 20, pp. 3517-3519, 2004.
[55]A. Medvid, P. Onufrijevs, L. Fedorenko, N. Yusupov, and E. Dauksta, "Suppression of Pores Formation on a Surface of p-Si by Laser Radiation," in Solid State Phenomena, pp. 337-341, 2010.
[56]V. Lehmann, "The Physics of Macropore Formation in Low Doped n‐Type Silicon," Journal of the Electrochemical Society, vol. 140, pp. 2836-2843, 1993.
[57]M. Marso, M. Berger, M. Thönissen, H. Lüth, and H. Münder, "An extended quantum model for porous silicon formation," Journal of the Electrochemical Society, vol. 142, pp. 615-620, 1995.
[58]R. Smith and S. Collins, "Porous silicon formation mechanisms," Journal of Applied Physics, vol. 71, pp. R1-R22, 1992.
[59]T. Witten Jr and L. M. Sander, "Diffusion-limited aggregation, a kinetic critical phenomenon," Physical review letters, vol. 47, pp. 1400, 1981.
[60]M. Beale, J. Benjamin, M. Uren, N. Chew, and A. Cullis, "An experimental and theoretical study of the formation and microstructure of porous silicon," Journal of Crystal Growth, vol. 73, pp. 622-636, 1985.
[61]R. A. Millikan and E. S. Bishop, Elements of electricity: a practical discussion of the fundamental laws and phenomena of electricity and their practical applications in the business and industrial world: American Technical Society, 1917.
[62]D. K. Cheng, Field and wave electromagnetics vol. 2: Addison-wesley New York, 1989.
[63]K. J. Laidler and H. Gerischer, The world of physical chemistry vol. 3: Oxford University Press Oxford, 1995.
[64]W. E. Preece, "The New Encyclopaedia Britannica: Micropaedia," Chicago:, vol. 9, 1980.
[65]T. Unagami, "Formation mechanism of porous silicon layer by anodization in HF solution," Journal of the electrochemical society, vol. 127, pp. 476-483, 1980.
[66]大木早苗, 大澤修一, 中野武雄, 馬場茂, "レーザー光照射による p 型 Si の局所的陽極酸化とナノ構造制御, " 成蹊大學理工研究報告," 2013.
[67]S. Cheung and N. Cheung, "Extraction of Schottky diode parameters from forward current‐voltage characteristics," Applied Physics Letters, vol. 49, pp. 85-87, 1986.
[68]X. Zhang, "Mechanism of Pore Formation on n‐Type Silicon," Journal of the Electrochemical Society, vol. 138, pp. 3750-3756, 1991.
[69]V. Lehmann, W. Hönlein, H. Reisinger, A. Spitzer, H. Wendt, and J. Willer, "A novel capacitor technology based on porous silicon," Thin Solid Films, vol. 276, pp. 138-142, 1996.
[70]X. Zhang, S. Collins, and R. Smith, "Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution," Journal of the Electrochemical Society, vol. 136, pp. 1561-1565, 1989.
[71]M. Beale, N. Chew, M. Uren, A. Cullis, and J. Benjamin, "Microstructure and formation mechanism of porous silicon," Applied Physics Letters, vol. 46, pp. 86-88, 1985.
[72]R. G. Gould, "The LASER, light amplification by stimulated emission of radiation," in The Ann Arbor conference on optical pumping, the University of Michigan, pp. 128, 1959.
[73]N. Ben-Tuvim, "LASER-LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION," Harefuah, vol. 65, pp. 191-194, 1963.
[74]A. E. Siegman, "Lasers University Science Books," Mill Valley, CA, vol. 37, 1986.
[75]R. K. Chang and A. J. Campillo, Optical processes in microcavities vol. 3: World scientific, 1996.
[76]T. Ozaki, R. Ganeev, A. Ishizawa, T. Kanai, and H. Kuroda, "Highly directive 18.9 nm nickel-like molybdenum X-ray laser operating at 150 mJ pump energy," Physical review letters, vol. 89, pp. 253902, 2002.
[77]T. J. Chuang, "Laser-induced gas-surface interactions," Surface Science Reports, vol. 3, pp. 1-105, 1983.
[78]A. White and J. Rigden, "Continuous Gas Maser Operation in Visible," vol. 50, ed, pp. 1697-&, 1962.
[79]P. Loosen, H.-G. Treusch, C. Haas, U. Gardenier, M. Weck, V. Sinnhoff, et al., "High-power diode lasers and their direct industrial applications," in Photonics West′95, pp. 78-88, 1995.
[80]A. Yariv, "Quantum electronics, 3rd," Edn.(John WieLy & Sons, New York, 1988) vol. pp.389, 1989.
[81]G. H. B. Thompson, "Physics of semiconductor laser devices," Chichester, Sussex, England and New York, Wiley-Interscience, vol. 1, pp. 572, 1980.
[82]H. Hertz, "Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung," Annalen der Physik, vol. 267, pp. 983-1000, 1887.
[83]J. B. Scott, "The Nobel Peace Prize," ed: JSTOR, pp. 562-563, 1921.
[84]D. Halliday, R. Resnick, and J. Walker, Fundamentals of physics extended vol. 1: John Wiley & Sons, 2010.
[85]A. T. Fromhold, Quantum mechanics for applied physics and engineering: Courier Corporation, 2012.
[86]D. K. Schroder, N. R. Thomas, and J. C. Swartz, "Free carrier absorption in silicon," Solid-State Circuits, IEEE Journal of, vol. 13, pp. 180-187, 1978.
[87]R. D. Kekatpure and M. L. Brongersma, "Quantification of free-carrier absorption in silicon nanocrystals with an optical microcavity," Nano letters, vol. 8, pp. 3787-3793, 2008.
[88]J. Isenberg and W. Warta, "Free carrier absorption in heavily doped silicon layers," Applied physics letters, vol. 84, pp. 2265-2267, 2004.
[89]M. A. Bandres and J. Gutiérrez-Vega, "Ince gaussian beams," Optics letters, vol. 29, pp. 144-146, 2004.
[90]M. Griot, "Gaussian beam optics," Optics Guide, section, vol. 2, 2009.
[91]W. Heisenberg, "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik," Zeitschrift für Physik, vol. 43, pp. 172-198, 1927.
[92]Liu Han-Jun "Optical properties of indium nitride nanorods." National Central University, Department of Physics, pp. 1-71, 2006.
[93]U. Gösele and Q.-Y. Tong, "Semiconductor wafer bonding," Annual Review of Materials Science, vol. 28, pp. 215-241, 1998.
[94]A. Cullis and L. Canham, "Visible light emission due to quantum size effects in highly porous crystalline silicon," Nature 353, pp.335-338, 1991.
[95]I. Berbezier and A. Halimaoui, "A microstructural study of porous silicon," Journal of applied physics, vol. 74, pp. 5421-5425, 1993.
[96]S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. Lebedev, et al., "Classification and control of the origin of photoluminescence from Si nanocrystals," Nature nanotechnology, vol. 3, pp. 174-178, 2008.
[97]O. Madelung, M. Schultz, and H. Weiss, "Physics of Group IV elements and III-V compounds," Landolt-Bornstein New Series, Group III, vol. 17, 1982.
[98]A. Mazzone, "Boron impurities on a vicinal Si (100) surface: a study of structural properties and binding energies," Philosophical Magazine Letters, vol. 82, pp. 207-216, 2002.
[99]C. W. Pearce and V. J. Zaleckas, "Gettering semiconductor wafers with a high energy laser beam," U.S Pantent No. 43131487, 1978.
[100]M. A. Green and M. J. Keevers, "Optical properties of intrinsic silicon at 300 K," Progress in Photovoltaics: Research and Applications, vol. 3, pp. 189-192, 1995.
[101]M. Wolkin, J. Jorne, P. Fauchet, G. Allan, and C. Delerue, "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen," Physical Review Letters, vol. 82, pp. 197, 1999.
指導教授 李天錫(Ben Lee) 審核日期 2016-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明