博碩士論文 103323003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.15.147.53
姓名 王柏文(Po-Wen Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同表面處理對鎂合金(AZ31、LZ91) 鍍層皮膜性質分析
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究針對商業用鎂合金AZ31與LZ91的表面腐蝕行為進行研究。透過業界進行多種表面處理,改善鎂合金AZ31與LZ91的抗腐蝕性,並進行電化學量測分析,探討其差異性。表面處理的方式有:電鍍處理、電泳處理、微弧氧化處理、烤漆處理,其中部分試片為包含兩種處理的複合型鍍層。
本研究以OM和SEM對鎂合金AZ31與LZ91及其鍍層作顯微結構觀察,並以SEM配備的EDS判別鍍層的化學組成,另外也使用XPS判別鍍層的化學組成。鑑定合金表面的結晶結構則利用XRD進行分析。合金及其鍍層的電化學性質,則將試片包覆後於室溫浸置於3.5wt% NaCl溶液中,進行動態極化曲線與電化學交流阻抗頻譜的量測。
實驗結果顯示,合金試片經電鍍後,可以有效提升腐蝕電位;經微弧氧化後,有效降低腐蝕速率,及增加腐蝕阻抗;經有機鍍層(電泳處理、烤漆處理)的試片無發生腐蝕現象。
摘要(英) The surface corrosion behavior of AZ31 and LZ91 magnesium alloys, and those surface treatments were investigated in this study. The ways of surface treatments included electroplating(EP), electrophoresis(ED), micro-arc oxidation(MAO) and painting. Some specimens were treated by a simultaneous combination of any two ways.
Morphologies and composition of bare AZ31 and LZ91 alloys, and coated samples were examined in SEM, EDS and XPS. XRD was also performed to identify the crystal structures of alloy surface. The anticorrosion ability was investigated by potentiodynamic polarization curves and electrochemical impedance spectroscropy (EIS) in 3.5wt% NaCl solutions.
The effect of electroplating of the alloy was improved the corrosion potential; The effect of micro-arc oxidation of the alloy was reduced the corrosion rate, and improved corrosion resistance; Then the electrophoresis and painting samples didn’t occur the corrosion.
關鍵字(中) ★ 鎂合金AZ31
★ 鎂合金LZ91
★ 電鍍
★ 微弧氧化
★ 電化學交流阻抗頻譜
關鍵字(英) ★ AZ31
★ LZ91
★ Electroplating
★ Micro arc oxidation
★ EIS
論文目次 目錄
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 IX
第一章 前言 1
第二章 文獻回顧 2
2-1鎂合金簡介 2
2-1-1 鎂合金AZ31簡介 6
2-1-2 鎂合金LZ91簡介 6
2-2常用鎂合金表面處理 8
2-2-1化成處理 8
2-2-2電鍍處理 10
2-2-3微弧氧化處理 11
2-2-4有機鍍層處理 14
2-3電化學分析 17
2-3-1腐蝕電位及電流 17
第三章 實驗步驟 24
3-1 實驗材料 24
3-2 實驗儀器 25
3-3 實驗步驟 26
第四章 結果與討論 30
4-1 不同試片粗糙度及硬度測試 30
4-2 表面微結構 30
4-2-1 AZ31及LZ91合金試片微結構觀察 30
4-2-2介在物顆粒數目與尺寸量測 33
4-2-3鍍層微結構/橫截面觀察及分析 35
4-4 不同試片腐蝕行為觀察 44
4-5 腐蝕電位及電流分析 45
4-6電化學交流阻抗頻譜分析 49
4-6-1 LZ91合金的氧化物和氯化物反應 49
4-6-2 AZ31合金的氧化物和氯化物反應 51
4-6-3 AZ31及LZ91合金試片的交流阻抗頻譜分析 52
4-6-4 AZ31及LZ91 EP試片的交流阻抗頻譜分析 56
4-6-5 AZ31及LZ91 MAO試片的交流阻抗頻譜分析 58
4-6-6 AZ31及LZ91 有機鍍層試片的交流阻抗頻譜分析 60
4-7 X-ray繞射分析 62
第五章 綜論 63
5-1 鎂合金AZ31和LZ91的腐蝕行為 63
5-2 鎂合金AZ31和LZ91及其鍍層的動態極化曲線表現 63
5-3 鎂合金AZ31和LZ91及其鍍層的交流阻抗頻譜分析表現 63
第六章 結論 65
參考文獻 66
附錄一 電化學交流阻抗頻譜擬合曲線 71
附錄二 AZ31再進行熱處理之實驗觀察 75
附錄三 電化學實驗注意事項 80
參考文獻 參考文獻
[1] Y. Kojima, "Platform Science and Technology for Advanced Magnesium Alloys," Mater. Sci. Forum, vol. 350, pp. 3-18, 2000.
[2] E. Ghali, W. Dietzel, and K.-U. Kainer, "General and localized corrosion of magnesium alloys: A critical review," Journal of Materials Engineering and Performance, vol. 13, pp. 7-23, 2004.
[3] R. B. Mears and C. D. Brown, "Light Metals for the Cathodic Protection of Steel Structures," Corrosion, vol. 1, pp. 113-118, 1945.
[4] D. R. Lide, Handbook of Chemistry and Physics, 71st ed.: CRC Press, 1991.
[5] P. Vanýsek, Handbook of Chemistry and Physics, 88th ed., 2007.
[6] M. Pourbaix, Atlas of Electrochemical Equilibriain Aqueous Solutions: National Association of Corrosion Engineers, 1974.
[7] ASM specialty handbook: Magnesium and magnesium alloys, 1999.
[8] J. L. Murray, "The Al-Mg (Aluminum-Magnesium) system," Bull. Alloy Phase Diagr., vol. 3, pp. 60-74, 1982.
[9] K. Z. Chong and T. S. Shih, "Conversion-coating treatment for magnesium alloys by a permanganate–phosphate solution," Mater. Chem. Phys., vol. 80, pp. 191-200, 2003.
[10] A. A. Nayeb-Hashemi, J. B. Clark, and A. D. Pelton, "The Li-Mg (Lithium-Magnesium) system," Bull. Alloy Phase Diagr., vol. 5, pp. 365-374, 1984.
[11] 吳泓瑜, "鎂鋰鋅合金之顯微結構與機械性質研究," 博士論文, 中華大學, 民國96年.
[12] 香港生產力促進局-材料及製造科技部, 鎂合金表面處理技術, 表面處理通訊第33期.
[13] S. Ono, K. Asami, and N. Masuko, "Mechanism of Chemical Conversion Coating Film Growth on Magnesium and Magnesium Alloys," Mater. Trans. JIM, vol. 42, pp. 1225-1231, 2001.
[14] L. Kouisni, M. Azzi, M. Zertoubi, F. Dalard, and S. Maximovitch, "Phosphate on magnesium alloy AM60 part 2: Electrochemical behavior in borate buffer solution," Surf. Coat. Technol., vol. 192, p. 239, 2005.
[15] J. I. Skar and D. Albright, "Phosphate permanganate: a chrome free alternative for magnesium pretreatment, Magnesium Alloys and their Applications," pp. 469-474, 2000.
[16] H. Huo, Y. Li, and F. Wang, "Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer," Corros. Sci., vol. 46, pp. 1467-1477, 2004.
[17] K. Y. Chiu, M. H. Wong, F. T. Cheng, and H. C. Man, "Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants," Surf. Coat. Technol., vol. 202, pp. 590-598, 2007.
[18] C. Wang, S. Zhu, F. Jiang, and F. Wang, "Cerium conversion coatings for AZ91D magnesium alloy in ethanol solution and its corrosion resistance," Corros. Sci., vol. 51, pp. 2916-2923, 2009.
[19] H. Ardelean, I. Frateur, and P. Marcus, "Corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings," Corros. Sci., vol. 50, pp. 1907-1918, 2008.
[20] M. F. Montemor, A. M. Simo˜es, and M. J. Carmezim, "Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection," Appl. Surf. Sci., vol. 253, pp. 6922-6931, 2007.
[21] J. K. Lin and J. Y. Uan, "Formation of Mg,Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3-/CO32- and corresponding protection against corrosion by the coating," Corros. Sci., vol. 51, pp. 1181-1188, 2009.
[22] N. Birbilis, P. C. Howlett, D. R. MacFarlane, and M. Forsyth, "Exploring corrosion protection of Mg via ionic liquid pretreatment," Surf. Coat. Technol., vol. 201, pp. 4496-4504, 2007.
[23] M. F. He, L. Liu, Y. T. Wu, Z. X. Tang, and W. B. Hu, "Corrosion properties of surface-modified AZ91D magnesium alloy," Corros. Sci., vol. 50, pp. 3267-3273, 2008.
[24] K. H. Yang, M. D. Ger, W. H. Hwu, Y. Sung, and Y. C. Liu, "Study of vanadium-basedchemical conversion coating on the corrosion resistance of magnesium alloy," Mater. Chem. Phys., vol. 101, pp. 480-485, 2007.
[25] X. P. Lei, G. Yu, Y. P. Zhu, Z. P. Zhang, X. M. He, B. N. Hu, et al., "Successful cyanide free plating protocols on magnesium alloys.," Trans. Inst. Metal Finishing, vol. 88, pp. 75-80, 2010.
[26] M. A. Gonzalez-Nunez, C. A. Nunez-Lopez, P. Skeldon, G. E. Thompson, H. Karimzadeh, P. Lyon, et al., "A Non-Chromate Conversion Coating for Magnesium Alloys and Magnesium-Based Metal Matrix Composites," Corros. Sci., vol. 37, pp. 1763-1772, 1995.
[27] M. Takaya, "Produce of manganence-type chemical conversion coatings for magnesium alloys and their corrosion resistance," JILM, vol. 45, pp. 713-718, 1995.
[28] H. Umehara, M. Takaya, and Y. Kojima, "An investigation of the structure and corrosion resistance of permanganate conversion coatings on AZ91D magnesium Alloy," Mater. Trans., JIM, vol. 42, pp. 1691-1699, 2001.
[29] J. E. Gray and B. Luan, "Protective coatings on magnesium and its alloys-a critical review," J. Alloys Compd., vol. 336, pp. 88-113, 2002.
[30] L. Chang, "Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation," J. Alloys Compd., vol. 468, pp. 462-465, 2009.
[31] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, "Review Plasma electrolysis for surface engineering," Surf. Coat. Technol., vol. 122, pp. 73-93, 1999.
[32] L. Rama Krishna and G. Sundararajan, "Aqueous Corrosion Behavior of Micro Arc Oxidation (MAO)-Coated Magnesium Alloys: A Critical Review," JOM, vol. 66, pp. 1045-1060, 2014.
[33] I. Corni, M. P. Ryan, and A. R. Boccaccini, "Electrophoretic deposition: From traditional ceramics to nanotechnology," J. Eur. Ceram. Soc., vol. 28, pp. 1353-1367, 2008.
[34] Q. Tian and H. Liu, "Electrophoretic deposition and characterization of nanocomposites and nanoparticles on magnesium substrates," Nanotechnology, vol. 26, pp. 1-18, 2015.
[35] 柯賢文, 腐蝕及其防治: 全華科技圖書股份有限公司, 民國92年.
[36] M. G. Fontana, 3 rd ed., 1986.
[37] 楊昇晃, "微型燃料電池設計、製作與電化學阻抗量測分析," 碩士論文, 中山大學, 民國94年.
[38] M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy: Wiley, 2008.
[39] M. Ciureanu, S. D. Mikhailenko, and S. Kaliaguine, "PEM fuel cells as membrane reactors: kinetic analysis by impedance spectroscopy," Catal. Today, vol. 82, pp. 195-206, 7/30/ 2003.
[40] J. M. Song, S. Y. Cha, and W. M. Lee, "Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method," J. Power Sources, vol. 94, pp. 78-84, 2/15/ 2001.
[41] J.-D. Kim, Y.-I. Park, K. Kobayashi, M. Nagai, and M. Kunimatsu, "Characterization of CO tolerance of PEMFC by ac impedance spectroscopy," Solid State Ionics, vol. 140, pp. 313-325, 4/1/ 2001.
[42] M. A. B. V. Electrochemical Impedance Spectroscopy (EIS) Part 4 –Equivalent Circuit Models. Available: http://www.metrohm-autolab.com/Applications/
[43] K. Kumagawa and T. Suzuki, "Effect of cooling rate on cast structure and formability of AZ31 magnesium alloy," Journal of Japan Institute of Light Metals, vol. 59, pp. 19-23, 2009.
[44] F. Guo, D. Zhang, X. Fan, J. Li, L. Jiang, and F. Pan, "Microstructure, texture and mechanical properties evolution of pre-twinning Mg alloys sheets during large strain hot rolling," Mater. Sci. Eng., A, vol. 655, pp. 92-99, 2016.
[45] C.-H. Chiu, Horng-YuWu, Jian-YihWang, and S. Lee, "Microstructure and mechanical behavior of LZ91 Mg alloy processed by rolling and heat treatments," J. Alloys Compd., vol. 460, pp. 246-252, 2008.
[46] C. A. Huang, T. H. Wang, T. Weirich, and V. Neubert, "Electrodeposition of a protective copper/nickel deposit on the magnesium alloy (AZ31)," Corros. Sci., vol. 50, pp. 1385-1390, 2008.
[47] Y.-l. Cheng, T.-w. Qin, H.-m. Wang, and Z. Zhang, "Comparison of corrosion behaviors of AZ31, AZ91, AM60 and ZK60 magnesium alloys," Trans. Nonferrous Met. Soc. China, vol. 19, pp. 517-524, 2009.
[48] Y.-S. Huang, T.-S. Shih, and C.-E. Wu, "Electrochemical behavior of anodized AA6063-T6 alloys affected by matrix structures," Appl. Surf. Sci., vol. 264, pp. 410-418, 2013.
[49] I. B. Singh, M. Singh, and S. Das, "A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution," J. Magnesium Alloys, vol. 3 pp. 142-148, 2015.
[50] D. Zhang, Y. Gou, Y. Liu, and X. Guo, "A composite anodizing coating containing superfine Al2O3 particles on AZ31 magnesium alloy," Surf. Coat. Technol., vol. 236, pp. 52-57, 2013.
[51] D. Sreekanth, N. Rameshbabu, and K. Venkateswarlu, "Effect of various additives on morphology and corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation," Ceram. Int., vol. 38, pp. 4607-4615, 2012.
[52] Atomic and ionic radii. Available: http://www.wiredchemist.com/chemistry/data/atomic-and-ionic-radii
[53] NIST-JANAF Thermochemical Tables. Available: http://kinetics.nist.gov/janaf/
[54] F. J. Peryea and J. K. Kittrick, "Relative solubility of corundum, gibbsite, boehmite, and diaspore at standard state conditions," Clays Clay Miner., vol. 36, pp. 391-396, 1988.
[55] G. Galicia, N. Pébère, B. Tribollet, and V. Vivier, "Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy," Corros. Sci., vol. 51, pp. 1789-1794, 2009.
[56] G. Baril and N. Pebere, "The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions," Corros. Sci., vol. 43, pp. 471-484, 2001.
[57] Z. Song, Z. Xie, G. Yu, B. Hu, X. He, and X. Zhang, "A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy," J. Alloys Compd., vol. 623, pp. 274-281, 2015.
[58] G. Baril, G. Galicia, C. Deslouis, N. Pébère, B. Tribollet, and V. Vivier, "An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions," J. Electrochem. Soc., vol. 154, pp. C108-C113, 2007.
指導教授 施登士(Teng-Shih Shih) 審核日期 2016-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明