博碩士論文 103323005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.128.205.155
姓名 張劭賓(SHAO-PIN CHANG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 加工路徑對傘形齒輪旋轉鍛造製程之有限元素法與反應曲面法分析
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計
★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究★ 旋轉鍛造螺旋齒輪製程分析
★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析★ 以有限元素法與反應曲面法分析增量式板金成形
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計★ 以有限元素法與反應曲面法分析兩點增量成形
★ 引伸成形加工問題之有限元素分析★ 應用流函數法分析軸對稱熱擠製加工問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文透過有限元素軟體Deform-3D進行旋轉鍛造傘形齒輪模擬分析,研究上模具運動路徑對填充率與應變均勻度的影響。本文之設計參數包含對胚料預成形之參數設計及旋轉鍛造加工製程參數等六個因子。胚料預成形設計參數包含體積V、胚料下端高度h_1、胚料上端直徑d_1以及胚料下端直徑d_2;旋轉鍛造加工製程參數包含下模每轉進給率S以及上模具傾斜角γ。實驗設計採用適合建構二階反應曲面之Box-Behnken 6因子3水準的設計建立共49組模擬,使用統計軟體Minitab依Deform-3D有限元素分析的結果進行回歸分析,以建立旋轉鍛造之填充率及應變均勻度的預測模型,進而探討各因子對填充率及應變均勻度的影響以及最佳設計參數之水準。本文所建立的填充率及應變均勻度預測方程式與有限元素模擬的結果進行驗證,其結果顯示預測模型具有相當的準確度。


關鍵字:旋轉鍛造、有限元素分析、傘形齒輪
摘要(英) An ideal FE model of cold rotary forging of a spur bevel gear is developed under the Deform-3D software and the upper die motion path on filling rate and equivalent strain uniformity are in this study.
The six factors in the design include the work-piece geometry and the rotary forging process parameters. The work-piece geometry such us piece volume V, Lower height〖 h〗_1, the diameter of the upper and lower diameter〖 d〗_1 〖、d〗_2 and the rotary forging process parameter such us the process parameter with feed amount of per revolution S , and inclination angle of the upper die γ.The experiment adopts 49 groups of analogs with the Box-Behnken design. Use the Minitab software to do the regression analysis and develop the predicted equations. By doing so, it’s excepted using the FEM model and surface response methodology to find the optimum design of the filling rate and equivalent strain uniformity .
In this paper filling rate and strain uniformity prediction equation established with the results of finite element simulations to verify the results show the prediction model with considerable accuracy.


Keywords: cold rotary forging, FEM, spur bevel gear
關鍵字(中) ★ 旋轉鍛造
★ 有限元素分析
★ 傘形齒輪
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 ix
表目錄 xiv
符號說明 xvi
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-2-1 圓柱及圓環旋轉鍛造鍛粗加工 4
1-2-2 傘形齒輪旋轉鍛造加工 9
1-3 研究動機 14
第二章 基本理論 15
2-1旋轉鍛造成型原理 15
2-2 旋轉鍛造運動分析 18
2-3傘形齒輪模具建立 29
第三章 有限元素法與實驗設計法 33
3-1有限元素模擬 33
3-1-1有限元素法於塑性加工之應用 34
3-1-2有限元素法之力學模式及數值分析 35
3-2 Deform-3D有限元素軟體[35] 36
3-2-1軟體介紹 36
3-2-2 Deform-3D的使用流程 37
3-3模擬參數設定 38
3-3-1旋轉鍛造加工參數及材料性質 38
3-3-2有限元素網格建構與模擬收斂性探討 40
3-3-3行星路徑軌跡有限元素分析結果例 42
3-3-4螺旋路徑軌跡有限元素分析結果例 46
3-3-5圓形路徑軌跡有限元素分析結果例 49
3-3-6直線路徑軌跡有限元素分析結果例 52
3-4實驗設計法[42] 56
3-4-1反應曲面法(Response Surface Methodology,RSM) 56
3-4-2迴歸分析基本理論 56
3-4-3模擬實驗因子與水準 59
第四章 結果與討論 62
4-1模擬驗證 62
4-2旋轉鍛造傘形齒輪結果 67
4-2-1旋轉鍛造傘形齒輪之軸向成形力與行程 67
4-2-2旋轉鍛造傘形齒輪之填充率 70
4-2-3旋轉鍛造傘形齒輪之應變均勻度 73
4-3模型建構 74
4-3-1圓形路徑回歸模型 79
4-3-2直線路徑回歸模型 89
4-3-3模型檢驗 99
4-4旋轉鍛造傘形齒輪之最佳化分析 101
4-4-1圓形路徑之模擬實驗最佳化 101
4-4-2直線路徑之模擬實驗最佳化 104
4-4-2上模具運動路徑對最佳化解的效應 106
4-5品質因子對品質特性之效應 107
4-5-2品質因子對應變均勻度之效應 116
第五章 結論與建議 125
5-1結論 125
5-2建議 126
參考文獻 127
附錄A 133
附錄B 136
參考文獻 [1] E. E. Slick, "Method of and apparatus for forgingmetal". US Patent 915 232, 16 March 1909.
[2] Marciniak, Z., 1970, “A rocking-die technique for cold-forming operations”, Machinery and Production Engineering, Vol.117, pp. 792-797.
[3] Slater, R.A.C., and Appleton, E., 1970, “Some experiments with model materials to simulate the rotary forging of hot steels”, Machine Tool Design Research Conf., Binningham, U.K., pp. 1117-1136.
[4] Standring, P. M., and Appleton, E., 1980, “Rotary forging developments in Japan, Part 1, Machine development and forging research”, Journal of Mechanical Working Technology, Vol.3, No.3, pp. 253-273.
[5] Schey, J. A., Venner, T. R., and Takomana, S. L., 1982, “Shape changes in the upsetting of slender cylinders”, Journal of Engineering for Industry, Vol.104, No.1, pp. 79-83.
[6] Zhang, M., 1984, “Calculating force and energy during rotating forging”, In 3 rd International Conference on Rotary Metalworking Processes(ROMP 3), pp. 115-124.
[7] Oudin, J., Ravalard, Y., Verwaerde, G., and Gelin, J. C., 1985, “Force, torque and plastic flow analysis in rotary upsetting of ring shaped billets”, International journal of mechanical sciences, Vol.27, No.11, pp. 761-780.
[8] Shivpuri, R., 1988, “Past developments and future trends in the rotary or orbital forging process”, Journal of Materials Shaping Technology, Vol.6, No.1, pp. 55-71.
[9] Decheng, Z., Shijian, Y., Wang, Z. R., and Zhenrui, X., 1992, “Defects caused in forming process of rotary forged parts and their preventive methods”, Journal of Materials Processing Technology, Vol.32, No.1, pp. 471-479.
[10] Guangchun, W., Kemin, X., and Yan, L., 1997, “Methods of dealing with some problems in analyzing rotary forging with the FEM and initial application to a ring workpiece”, Journal of materials processing technology, Vol.71, No.2, pp. 299-304.
[11] Choi, S., Na, K. H., and Kim, J. H., 1997, “Upper-bound analysis of the rotary forging of a cylindrical billet”, Journal of Materials Processing Technology, Vol.67, No.1, pp. 78-82.
[12] Oh, H. K., and Choi, S., 1997, “A study on center thinning in the rotary forging of a circular plate”, Journal of materials processing technology, Vol.66, No.1, pp. 101-106.
[13] Guangchun, W., and Guoqun, Z., 2002, “Simulation and analysis of rotary forging a ring workpiece using finite element method”, Finite elements in analysis and design, Vol.38, No.12, pp. 1151-1164.
[14] Liu, G., Yuan, S. J., Wang, Z. R., and Zhou, D. C., 2004, “Explanation of the mushroom effect in the rotary forging of a cylinder”, Journal of materials processing technology, Vol.151, No.1, pp. 178-182.
[15] Montoya, I., Santos, M. T., Pérez, I., González, B., and Puigjaner, J. F., 2008, “Kinematic and sensitivity analysis of rotary forging process by means of a simulation model”, International Journal of Material Forming, Vol.1, No.1, pp. 383-386.
[16] G. Liu, S. J. Yuan, Z. R. Wang and T. Xie, "Finite element model and simulation of rotary forging of a disc," ACTA Metallurgica Sinica (English Letters), vol. 13, no. 2, pp. 470-475, 2009.
[17] Han, X., and Hua, L, 2009, “Comparison between cold rotary forging and conventional forging”, Journal of mechanical science and technology, Vol.23, No.10, pp. 2668-2678.
[18] Hua, L., and Han, X., 2009, “3D FE modeling simulation of cold rotary forging of a cylinder workpiece”, Materials & Design, Vol.30, No.6, pp. 2133-2142.
[19] Han, X., and Hua, L., 2009, “Effect of size of the cylindrical workpiece on the cold rotary-forging process”, Materials & Design, Vol.30, No.8, pp. 2802-2812.
[20] Han, X., and Hua, L., 2009, “3D FE modeling of cold rotary forging of a ring workpiece”, Journal of Materials Processing Technology, Vol.209, No.12-13, pp. 5353–5362.
[21] Han, X., and Hua, L., 2012, “Friction behaviors in cold rotary forging of 20CrMnTi alloy”, Tribology International, Vol.55, pp. 29-39.
[22] Han, X., and Hua, L., 2012, “3D FE modelling of contact pressure response in cold rotary forging”, Tribology International, Vol.57, pp. 115–123.
[23] Wang, H., Sun S., Xia, J., and Zhang, M., 2005, “3D Finite Element Simulation of Rotary Forging in Spiral Bevel Driven Gear”, China Metalforming Equipment & Manufacturing Technology, Vol.40, No.3, pp. 93-96.
[24] Hu, R., Cheng, P. Y., Hua, L., Lu, Z. G., and Lan, J., 2007, “Influence of Processing Parameter on Stress and Failure Form of Rotary Roll Cavity Die for Straight Tooth Bevel Gear”, Hot Working Technology, Vol.36, No.1, pp. 38-41.
[25] Cheng, P. Y., Hu, R., Lu, Z, Guo., and Hwa, L., 2008, “3D numerical simulation of rotary forging for bevel gear blank”, China Metalforming Equipment & Manufacturing Technology, Vol.40, No.3, pp. 93-96.
[26] 何明祥,2008,”斜齒輪溫間擺輾鍛造模具最佳化設計與壽命預估之研究”,碩士論文,國立高雄應用科技大學。
[27] Li, Y., Wang H., Wang, X., and Zhu, C., 2009, “Study on rotary forging process of spiral bevel gear”, Forging & Stamping Technology, Vol.34, No.6, pp. 24-27.
[28] Li, Y., Wang, H., Wang, X., and Zhu, C., 2009, “Fracture of Concave Die for Spiral Bevel Gear in the Rotary Forging Process”, China Metal Forming Equipment & Manufacturing Technology, Vol.44, No.4, pp. 89-92.
[29] J. W. Sun, J. H. Fu, Y. T. Li, J. X. Cao and Y. Yan, "Analys of new rotary forging process of rear-semiaxis using Deform-3D," Forging and stamping technology, vol. 34, no. 3, pp. 160-163, 2009.
[30] Deng, X., Hua, L., Han, X., and Song, Y., 2011, “Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear”, Materials & Design, Vol.32, No.3, pp. 1376-1389.
[31] Deng, X. B., Hua, L., and Han, X. H., 2011, “Three-dimensional FE modelling simulation of cold rotary forging of spiral bevel gear”, Ironmaking & Steelmaking, Vol.38, No.2, pp. 101-111.
[32] Yang, M. X., and Ren, Z. Y., 2012, “Research on the technology of cold precision orbital forming for semi-axle-bevel gear”, Machinery, Vol.39, No.2, pp. 56-60.
[33] Samołyk, G., 2013, “Investigation of the cold orbital forging process of an AlMgSi alloy bevel gear”, Journal of Materials Processing Technology, Vol.213, No.10, pp. 1692-1702.
[34] 蕭至祥,2014,”傘形齒輪旋轉鍛造製程有限元素分析”,碩士論文,國立中央大學。
[35] Zhuang,W., Hua,L., Han, X., and Dong,L.,2014“Distribution of Microstructure and Vickers Hardness in Spur Bevel Gear Formed by Cold Rotary Forging” Advances in Mechanical Engineering ,Vol.2014, Article ID 809276, 13 pp
[36] Feng,W.,Yao,W.,Jiang P.,2014”Influence of eccentricity on movements of orbital head with double eccentric structure in orbital forging”, Procedia Engineering , Vol.81, PP 2348–2354

[37] Gong X.,Yang F.,Chen H.,2015 “Research on wear of hot rotary forging die based on Archard′s model”,FORGING&STAMPING TECHNOLOGY , Vol. 40 No. 10, pp 119-121
[38] Feng,W.,Yao,W.,Jiang P.,2015 ,”Simulation and analysis of three-dimensioal forming trajectory of spiral line and multi-branches rose curve of orbital forming press “,JOURNAL OF PLASTICITY ENGINEERING,Vol. 22No.2,pp 8-11
[39] Dong,L., Hua,L., Han, X., Lan,J., and Zhuang.W.,2015, “Effects of the rotation speed ratio of double eccentricity bushings on rocking tool path in a cold rotary forging press” Vol.29,Issue 4, pp 1619-1628
[40] 趙龍清,2015,”以有限元素法與反應曲面法分析加工路徑對旋轉鍛造齒輪最佳化設計之影響”,碩士論文,國立中央大學。
[41] 蘇耿民,2015,”以有限元素法及反應曲面法分析旋轉鍛造傘形齒輪之加工問題”,碩士論文,國立中央大學。
[42] 葉怡成,2001年6月,”製程與產品最佳化”,五南出版社。
[43] V. Patil Basavaraj, U. Chakkingal and T. S. Prasanna Kumar, "Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation," Journal of materials processing technology, vol. 209, no. 1, pp. 89-95, 2009.
指導教授 葉維磬 審核日期 2016-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明