博碩士論文 103624011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:3.146.176.61
姓名 林芷薇(Chin-Wei Lin)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 使用自然電位觀測與FLAC3D模式分析實驗室砂箱尺度邊坡破壞歷程
(Assessment of saturation triggered slope failure by using self-potential measurements and FLAC3D numerical model)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 邊坡土壤中孔隙水壓的急劇變化通常為邊坡破壞發生的主要原因,因此藉由邊坡孔隙水壓的監測,將能提供邊坡災害的早期預警。相較於其它物理探測法而言,自然電位法便宜、便利、省力且為非侵入性探測法,本研究利用自然電位法對於邊坡破壞進行探測,嘗試找出自然電位在邊坡破壞時之變化。本研究目的為利用量測之電位變化,與模擬邊坡之孔隙水壓歷程,判斷邊坡破壞時之電位與孔隙水壓間之關係。本研究首先利用自然電位法監測二維砂箱試驗中的邊坡,並取得在不同的孔隙水壓下,砂箱中土體破壞時所量測到的自然電位分布,試驗完成後會得到試驗錄影、自然電位數據及壓力水頭分布;另外本研究利用Hydrus2D計算邊坡之壓力水頭分佈率定得知土體之水力傳導係數為0.013cm/s;接著以FLAC3D軟體模擬砂箱土體邊坡模型,進行水力參數率定及水流入滲情況驗證得知水力傳導係數為0.0125cm/s、孔隙率為0.3,此參數亦利用模擬邊坡破壞面與砂箱試驗破壞面位置關係獲得驗證。接著本研究分析電位資料,以影像擷取對應電位資料訊號,判斷邊坡破壞事件;最後將FLAC3D模擬結果將能求得非極化電極擺設位置每秒之孔隙水壓,與自然電位相互比較,即得電位與孔隙水壓間的關係圖。由試驗與數值模擬結果擬合分析發現,當邊坡開始濕潤後電位會有上升趨勢,此趨勢隨著孔隙水壓上升速度變慢,電位反而下降至較原本背景訊號低之位置,故得知孔隙水壓在邊坡逐漸濕潤時與電位關係為正相關,在邊坡破壞前夕此關係轉為逆相關。孔隙水壓在達至最大值前電位會有下降反應,且邊坡破壞後之電位變化依舊有明顯之震盪反應,由此得知邊坡破壞之電位前兆可能為下降趨勢。
摘要(英) The changes of pore pressure in slopes is recognized to be the main reason to trigger slope failure events. Pore pressure monitoring are the typical means in providing early warnings for such slope disasters. Comparing with other geophysical measuring methods, self-potential technique is an efficient, convenient, labor-saving and non-invasive method for site characterization. To assess the variations of self-potential signal induced by pore pressure variations and slope failure events, this study employed the technique of self-potential measurements for monitoring saturation process and the associated slope failure processes in a two-dimensional sandbox experiment. In the experiment, the distribution of self-potential were measured associated with monitoring of slope failure events and pore pressure variations in the sandbox. The study also employed numerical models to simulate the soil saturation and slope failure processes in the sandbox. The Hydrus2D numerical model was employed to estimate soil hydraulic conductivity based on the distribution of pressure head near and below the developed slope in the sandbox. This study then used FLAC3D software to simulate and calibrate the slope failure in the sandbox. The pore pressure variations and slope failure events from FLAC3D software are the basis to develop relationship between pore pressure and self-potential variations. Experiment results showed that the increase of soil saturation can lead to increase of self-potential voltage differences. However, significant drops of signals are obtained associated with the slope failure events. The pore pressure (or saturation) is positive correlated with the self-potential variations. However, the negative correlation was obtained right before a slope failure event (few seconds before the first slope failure event). Such behavior can be one of the precursor to predict slope failure evens for practical applications.
關鍵字(中) ★ 邊坡穩定
★ 自然電位法
★ 砂箱試驗
★ FLAC3D
★ Hydrus2D
關鍵字(英) ★ slope stability
★ Self-potential
★ sandbox experiment
★ FLAC3D
★ Hydrus2D
論文目次 摘要 v
ABSTRACT vii
目錄 ix
圖目錄 xii
表目錄 xvii
符號說明 xviii
第一章 緒論 1
1-1 背景與動機 1
1-2 研究目的 1
1-3 論文架構 2
第二章 文獻回顧 3
2-1 邊坡穩定 3
2-2 自然電位法 11
2-2-1 自然電位法在邊坡崩塌之發展 12
2-3 FLAC3D數值程式相關應用 14
第三章 研究方法 16
3-1 砂箱試驗 16
3-1-1 砂箱試驗介紹 16
3-1-2 砂箱試驗步驟 21
3-2 數值模式 23
3-2-1 Hydrus2D 23
3-2-2 FLAC3D 24
3-2-3 FLAC3D模擬設定 27
3-3 電位資料分析 31
第四章 結果與討論 32
4-1 砂箱試驗 32
4-2 Hydrus2D 38
4-3 FLAC3D 39
4-3-1 FLAC3D初始應力分布 39
4-3-2 FLAC3D初始地下水位面設定 40
4-3-3 FLAC3D水力耦合計算之參數率定與驗證 41
4-4 自然電位 50
4-5 模擬結果與試驗結果分析 53
第五章 結論與建議 57
5-1 結論 57
5-2 建議 59
參考文獻 60
參考文獻 〔1〕 羅鴻傑,「降雨入滲對崩塌地邊坡穩定之耦合分析」,中興工程顧問社大地工程研究中心,2009。
〔2〕 Mantovani, F., Pasuto, A., Silvano, S. and Zannoni, A., “Collecting data to define future hazard scenarios of the Tessina landslide”, International Journal of Applied Earth Observation and Geoinformation, Vol 2, pp. 33-40, 2000.
〔3〕 Zêzere, J., Trigo, R. and Trigo, I., “Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal) : assessment of relationships with the North Atlantic Oscillation”, Natural Hazards and Earth System Science, Vol 5, pp. 331-344, 2005.
〔4〕 Ray, R. L. and Jacobs, J. M., “Relationships among remotely sensed soil moisture, precipitation and landslide events”, Natural Hazards, Vol 43, pp. 211-222, 2007.
〔5〕 李俊龍,「邊坡預警監測系統」,三聯技術,7~12頁,2010。
〔6〕 徐鐵良,「地質與工程」,中國工程師學會,台北,第六版, 民國75年。
〔7〕 Dyke, L. D. and Brooks, G. R., The physical environment of the Mackenzie Valley, Northwest Territories: a base line for the assessment of environmental change., Geological Survey of Canada, 2000.
〔8〕 Koukis, G. and Ziourkas, C., “Slope instability phenomena in Greece: A statistical analysis”, Bulletin of the International Association of Engineering Geology, Vol 43, pp. 47-60, 1991.
〔9〕 Sidle, R. C. and Swanston, D. N., “Analysis of a small debris slide in coastal Alaska ”, Canadian Geotechnical Journal, Vol 19, pp. 167-174, 1982.
〔10〕 Terzaghi, K., Mechanisms of landslides, engineering geology (Berdey) volume., Geological Society of America, 1950.
〔11〕 Anderson, S. A. and Sitar, N., “Analysis of rainfall-induced debris flows”, Journal of Geotechnical Engineering, Vol 121, pp.544-552, 1995.
〔12〕 蘇柏嘉,「應用數值分析模擬降雨對邊坡穩定之影響」,第11屆台灣大地工程研討會,C30 ,2005。
〔13〕 李東恩,「莫拉克颱風後曾文水庫上游集水區崩塌地地文特性分析之研究」,國立中興大學,碩士論文,民國101年。
〔14〕 行政院,行政院中央災害防就會報:103年災害防救白皮書,民國103年,取自
http://www.ey.gov.tw/cdprc/News_Content.aspx?n=3C0311D19EAA0CFE&sms=DA6D9254E41A9FA3&s=C11B72EDC3A28169。
〔15〕 Bogoslovsky, V. A. and Ogilvy, A. A., “Geophysical methods for the investigation of landslides ”, Geophysics, Vol 42, pp. 562-571, 1977.
〔16〕 Hack, R., “Geophysics For Slope Stability” , Surveys in Geophysics , Vol 21, pp. 423-448, 2000.
〔17〕 Jongmans, D. and Garambois, S., “Geophysical investigation of landslides : a review”, Bulletin de la Societe Geologique de France, Vol 178, pp.101-112, 2007.
〔18〕 Jongmans, D. and Garambois, S., “Geophysical investigation of landslides:a review”, Bulletin de la Société Géologique de France, Vol 178(2), pp. 101-112, 2007.
〔19〕 Bouillon, A., “Geophysics for Geohazards on Land: State-of-the-art, case studies, and education”, International Center for Geohazards, ICG Report, University of Strasbourg, T1, 2005.
〔20〕 Bichler, A., Bobrowsky, P., Best, M., Douma, M., Hunter, J. and Calvert, T., “Three-dimensional mapping of a landslide using a multi-geophysical approach: the Quesnel Forks landslide”, Landslides, Vol 1, pp.29-40, 2004.
〔21〕 Bruno, F. and Martillier, F., “ Test of high-resolution seismic reflection and other geophysical techniques on the Boup landslide in the Swiss Alps”, Surveys in Geophysics, Vol 21, pp. 335-350, 2000.
〔22〕 Ferrucci, F., Amelio, M., Sorriso-Valvo, M. and Tansi, C., “Seismicprospecting of a slope affected by deep-seated gravitational slope deformation: the Lago Sackung, Calabria, Italy”, Engineering Geology, Vol 57, pp. 53-64, 2000.
〔23〕 Glade, T., Stark, P. and Dikau, R., “Determination of potential landslide shear plane depth using seismic refraction—a case study in Rheinhessen, Germany”, Bulletin of Engineering Geology and the Environment, Vol 64, pp. 151-158, 2005.
〔24〕 Mauritsch, H. J., Seiberl, W., Arndt, R., Römer, A., Schneiderbauer, K. and Sendlhofer, G. P., “Geophysical investigations of large landslides in the Carnic Region of southern Austria”, Engineering Geology, Vol 56, pp. 373-388, 2000.
〔25〕 Caris, J. and Van Asch T. W., “Geophysical, geotechnical and hydrological investigations of a small landslide in the French Alps”, Engineering Geology, Vol 31, pp. 249-276, 1991.
〔26〕 Jongmans, D., Hemroulle, P., Demanet, D., Renardy, F. and Vanbrabant, Y., “Application of 2D electrical and seismic tomography techniques for investigating landslides”, Eur J Environ Eng Geophys, Vol 8, pp. 75-89, 2000.
〔27〕 Meric, O., Garambois, S., Jongmans, D., Wathelet, M., Chatelain J. L. and Vengeon, J., “Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France”, Canadian Geotechnical Journal, Vol 42, pp. 1105-1115, 2005.
〔28〕 Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E. and Sdao, F., “2D electrical resistivity imaging of some complex landslides in Lucanian Apennine chain, southern Italy”, Geophysics, Vol 70, pp. B11-B8, 2005.
〔29〕 Meric, O., Garambois, S. and Orengo, Y., “Large gravitational movement monitoring using a spontaneous potential network”, 19th Annual meeting of SAGEEP, USA, Vol 6, 2006.
〔30〕 Agnesi, V., Camarda, M., Conoscenti, C., Di Maggio, C., Diliberto, I. S. and Madonia, P., “A multidisciplinary approach to the evaluation of the mechanism that triggered the Cerda landslide (Sicily, Italy)”, Geomorphology, Vol 65, pp. 101-116, 2005.
〔31〕 Schmutz, M., Albouy, Y., Guérin, R., Maquaire, O., Vassal, J. and Schott, J. J., “Joint electrical and time domain electromagnetism (TDEM) data inversion applied to the Super Sauze earthflow (France)”, Surveys in Geophysics, Vol 21, pp. 371-390, 2000.
〔32〕 Batayneh, A. T. and Diabat, A. A. Al., “Application of a two-dimensional electrical tomography technique for investigating landslides along the Amman–Dead Sea highway”, Jordan Environmental Geology, Vol 42, pp. 399-403, 2002.
〔33〕 Lebourg, T., Binet, S., Tric, E., Jomard, H. and El. Bedoui, S., “Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide”, Terra Nova, Vol 17, pp. 399-406, 2005.
〔34〕 Demoulin, A., Pissart, A. and Schroeder, C., “On the origin of late Quaternary palaeolandslides in the Liège (E Belgium) area”, International journal of earth sciences, Vol 92, pp.795-805, 2003.
〔35〕 Havevith, H. B., Jongmans, D., Abdrakhmatov, K., Trefois, P., Delvaux, D. and Torgoev, I., “Geophysical investigations of seismically induced surface effects: case study of a landslide in the Suusamyr valley, Kyrgyzstan”, Surveys in Geophysics, Vol 21, pp. 351-370,2000.
〔36〕 Wisen, R., Christiansen, A. V., Auken, E. and Dahlin, T., “Application of 2D laterally constrained inversion and 2D smooth inversion of CVES resistivity data in a slope stability investigation”, 9th Meeting, Environmental and Engineering Geophysical Society, European Section, O-002, 2003.
〔37〕 Pettinelli, E., Beaubien, S. and Tommasi, P., “GPR investigation to evaluate the geometry of rock slides and buckling in a limestone formation in northern Italy”, European Journal of Environmental and Engineering Geophysics, Vol 1 , pp. 271-286, 1996.
〔38〕 Jeannin, M., Garambois, S., Grégoire, C. and Jongmans, D., “ Multiconfiguration GPR measurements for geometric fracture characterization in limestone cliffs (Alps)”, Geophysics, Vol 71, pp. B85-B92, 2006.
〔39〕 Willenberg H., Evans, K., Eberhardt, E., Loew, S., Spillmann, T. and Maurer, H., “ Geological, geophysical and geotechnical investigations into the internal structure and kinematics of an unstable, complex sliding mass in crystalline rock”, Proc 9th International Symp Landslides2004, pp. 489-494, 2004.
〔40〕 Del Gaudio V., Wasowski, J., Pierri, P., Mascia, U. and Calcagnile, G., “Gravimetric study of a retrogressive landslide in southern Italy”, Surveys in Geophysics, Vol 21, pp.391-406, 2000.
〔41〕 Revil, A. and Jardani, A., “The Self-Potential Method: Theory and Applications in Environmental”, Geosciences, Cambridge University Press ,2013.
〔42〕 Sidle, R. C., Swanston, D. N., “Analysis of a small debris slide in coastal Alaska ”, Canadian Geotechnical Journal, Vol 19, pp. 167-174, 1982.
〔43〕 Aubert, M. and Yéné Atangana, Q., “Self-potential method in hydrogeological exploration of volcanic areas”, The Groundwater journal, Vol 34, pp. 1010-1016, 1996.
〔44〕 Finizola, A., Lénat, J. F., Macedo, O., Ramos, D., Thouret, J. C. and Sortino, F., “Fluid circulation and structural discontinuities inside Misti volcano (Peru) inferred from self-potential measurements”, Journal of Volcanology and Geothermal Research, Vol 135, pp.343-360, 2004.
〔45〕 Perrier, F., Trique, M., Lorne, B., Avouac, J. P., Hautot, S. and Tarits, P., “Electric potential variations associated with yearly lake level variations ”, Geophysical Research Letters, Vol 25, pp. 1955-1958, 1998.
〔46〕 Doussan, C., Jouniaux, L. and Thony, J. L., “Temporal variations of SP and unsaturated water flow in loam and clay soils:a seasonal field study”, Journal of Hydrology, Vol 267, pp. 173-185, 2002.
〔47〕 Wanfang, Z., Beck, B. F. and Stephenson, J. B., “ Investigation of groundwater flow in karst areas using component separation of natural potential measurements”, Environmental Geology, Vol 37, pp. 19-25, 1999.
〔48〕 Naudet, V., Revil, A., Bottero, J. Y. and Bégassat, P., “Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater”, Geophysical Research Letters, Vol 30, pp. HLS 2-1-HLS 2-4, 2003.
〔49〕 Naudet, V., Lazzari, M., Perrone, A., Loperte, A., Piscitelli, S. and Lapenna, V., “Integrated geophysical and geomorphological approach to investigate the snowmelt-triggered landslide of Bosco Piccolo village (Basilicata, southern Italy)”, Engineering Geology, Vol 98, pp. 156-167, 2008.
〔50〕 Perrone, A., Iannuzzi, A., Lapenna, V., Lorenzo, P., Piscitelli, S. and Rizzo, E., “High-resolution electrical imaging of the Varco d′Izzo earthflow (southern Italy)”, Journal of Applied Geophysics, Vol 56, pp.17-29, 2004.
〔51〕 楊凱傑,「利用互相關方法探討大地電場與地震波的耦合行為」,國立中央大學,碩士論文,民國103年。
〔52〕 Meric, O., Garambois, S., Jongmans, D., Wathelet, M., Chatelain, J. L. and Vengeon, J. M., “Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France”, Canadian Geotechnical Journal, Vol 42, pp. 1105-1115, 2005.
〔53〕 Shinbrot T, Kim, N. H. and Thyagu, N. N., “Electrostatic precursors to granular slip events”, Proc Natl Acad Sci U S A, Vol 109, pp. 10806-10810, 2012.
〔54〕 Hattori, K., Kohno, H., Tojo, Y., Terajima, T. and Ochiai, H., “Early warning of landslides based on landslide indoor experiments”, EGU General Assembly Conference Abstracts2009, pp. 11502, 2009.
〔55〕 馮正一、林柏辰和游繁結,「邊坡崩塌引起電位變化之室內試驗」,46 (4), 1149-1160頁,2014。
〔56〕 徐鼎平,FLAC/FLAC3D基礎與工程實例,DynoMedia Inc.,中國大陸,民國98年。
〔57〕 Cala, M. and Flisiak, J., “Slope stability analysis with FLAC and limit equilibrium methods”, FLAC and Numerical Modeling in Geomechanics—2001 (Proceedings of the 2nd International FLAC Symposium on Numerical Modeling in Geomechanics, Ecully-Lyon, France, October 2001), pp.113-114, 2001.
〔58〕 Varela, A. and Alonso, L., “3D slope stability analysis at Boinás East gold mine”, FLAC and Numerical Modeling in Geomechanics Brummer, Eds Balkema Sudbury, 2003.
〔59〕 Zhu, D., Yan, E., Hu, G. and Lin, Y., “Revival deformation mechanism of Hefeng landslide in the three gorges reservoir based on FLAC3D software”, Procedia Engineering, Vol 15, pp. 2847-2851, 2011.
〔60〕 Sarkar, K., Singh, T. N. and Verma, A. K., “ A numerical simulation of landslide-prone slope in Himalayan region—a case study”, Arab J Geosci, Vol 5, pp. 73-81, 2012.
〔61〕 葉生祥,「擋土排樁群於邊坡穩定之力學行為探討」,國立中興大學,碩士論文,民國93年。
〔62〕 Chen, C. Y. and Martin, G., “ Soil–structure interaction for landslide stabilizing piles”, Computers and Geotechnics, Vol 29, pp. 363-386, 2002.
〔63〕 陳建元、黃鈞暐,「三維邊坡穩定樁受震行為模擬分析」,中華土水保持學報,第46卷第二期,79~87頁,民國104年。
〔64〕 席繼樓、宋豔茹、胡明朝、劉超、徐學恭和尚先旗,「全方位自然電場觀測方法和觀測技術研究」,地震學報, 35 (1), 94~107頁,2013。
〔65〕 ITASCA, Fast Lagrangian analysis of continua in 3-Dimensions, version 5.01, Minnesota, 2012.
〔66〕 劉波、韓彦輝,「FLAC原理實例與應用指南」,人民交通出版社,中國大陸,民國94年。
〔67〕 張玉軍,「基於固流耦合理論的覆岩破壞特徵及湧水量預計的數值模擬」,煤炭學報,第34卷第五期,610~613頁,98年5月。
〔68〕 張峻閔,「以實驗探討滑坡在滲流情況下破壞的機制與條件」,國立成功大學,碩士論文,民國103年。
〔69〕 簡睿宏,「水文因子導致邊坡崩塌之研究」,國立高雄大學,碩士論文,民國98年。
〔70〕 Kalin,M., “Hydraulic Piping,Theoretical and Experimental Findings”, Can.Geotech. J., Vol 14, pp. 107-124, 1977.
〔71〕 Khilar,K. C., Fogler, H. S. and Gray, D. H., “Model for Piping-Plugging in Earthen Structures”, J. Geotech. Eng., Vol 111, pp. 833-847, 1985.
〔72〕 Gee, G. W., Bauder, J. W. and Klute, A., “Particle-size analysis”, Methods of soil analysis Part 1 Physical and mineralogical methods, pp. 383-411, 1986.
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2016-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明