博碩士論文 993403016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:166 、訪客IP:18.118.166.130
姓名 葉湘羭(Siang-Yu Ye)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 具齒面修整之行星齒輪組受載齒面接觸分析
(Loaded Tooth Contact Analysis of Planetary Gear Sets with Flank Modification)
相關論文
★ LED封裝點膠系統創新設計之研究★ 夾治具概念設計方法之研究
★ 葡萄糖檢測電極基材之化銅電鍍鎳金製程開發研究★ 印刷電路板蝕刻製程設計與可視化驗證實驗
★ 平行軸錐形齒輪齒根應力特性之研究★ 漸開線直齒錐形齒輪齒根應力之量測與分析
★ 單軸押出機減速機系列產品之計算機輔助開發模式之研究★ 漸開線直齒錐形齒輪齒根應力計算模型之初步研究
★ 非旋轉式表面電漿儀之創新設計與製作★ 電腦輔助單軸押出機減速機系列產品之開發
★ 單軸押出機減速機箱體系列化發展模式之研究★ 電腦輔助機械零件製造成本預估 – 以單軸押出機減速機為例
★ 直齒錐形齒輪齒根應力解析計算模式之研究★ 具點接觸型態之歪斜軸錐形齒輪對齒面疲勞破壞之初步研究
★ 粉末冶金齒輪齒根疲勞強度之研究★ 電腦輔助設計程式模組之建構-以齒輪減速機為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 行星齒輪機構因具功率分流設計,與一般平行軸齒輪對比較,具有較高功率體積密度、輸出輸入軸同軸心與設計緊實等優點,因此廣泛運用於各種傳動中。但實際運轉中,行星齒輪組一方面會因受到加工、組裝誤差與嚙合剛性影響,造成行星齒輪間負載分配不均與嚙合過程負載、應力變化跳動;另一方面,因受組件變形影響,如托架、行星銷軸與太陽齒輪扭轉等變形,皆會造成嚙合齒面負載分佈不均。一般而言,在工業應用上會以齒面修整方式,以改善前述問題,進而提升齒輪機構承載能力與傳動效能。但修整後之齒面在受載下的接觸結果卻必須要能事先預估,始得以掌握齒面修整特性。因此本論文之研究目標即為提出一可分析行星齒輪組之受載齒面接觸分析模型(LTCA),以模擬、並分析在齒面修整、組件變形、以及存在各種誤差等真實狀況下之嚙合齒面接觸狀況。

在本論文中先以行星齒輪組齒面修整模式:太陽齒輪採螺旋角修整,行星齒輪採齒線隆起修整以及齒形修整形式,建立成形磨加工之三維齒面方程式。為求得行星齒輪組之接觸狀況,本研究並根據齒輪組特性,納入修整齒面與誤差,建立齒面接觸分析模型(TCA),計算嚙合齒面接觸點參數,以及分析在齒面修整與各種誤差下之傳動誤差、背隙以及齒間間隙變化。納入所發展的分析模型的誤差包括行星齒輪齒厚誤差,行星銷孔位置偏差,托架、太陽齒輪、行星齒輪之偏心以及行星齒輪銷軸偏斜等誤差。

行星齒輪組受載齒面接觸分析模型(LTCA)係以影響係數法為基礎建立而得,可用以分析各種齒面受載下接觸特性。此LTCA分析模型納入組件變形之影響,包括輪齒齒面接觸、彎曲、剪力變形,托架與行星銷軸變形,太陽齒輪軸扭轉變形等。模型亦納入由齒面接觸分析模型(TCA)計算之接觸齒面幾何關係,可模擬各種赫茲、非赫茲接觸狀態,以及分析各項組件之加工、組裝誤差對受載接觸之影響。

為了驗證理論模型之可靠度,本研究以有限元素分析軟體計算所探討之行星齒輪組機構之受載下齒面應力與行星齒輪間負載分配,並與分析模型比較。結果顯示兩者應力變化趨勢相近且最大值差距少於10%,負載分配差距少於1%,證明理論分析模型具有相當的可信度。

本論文並以一實際之行星齒輪組為分析案例。首先以發展之TCA模型分析在有、無誤差以及齒面修整下,行星齒輪組之傳動誤差、背隙變化。再以LTCA模型分析在組件變形以不同誤差影響下,行星齒輪組嚙合過程之應力、負載與受載傳動誤差之變化,以及齒面上接觸斑大小與應力分佈情況。論文中亦包括模擬因變形造成之齒頂邊緣接觸以及因行星銷軸偏斜誤差所造成齒端邊緣接觸等之非赫茲接觸應力狀況,以及在具太陽齒輪浮動設計下,誤差對行星齒輪間負載分配與太陽齒輪中心軌跡。

分析結果顯示環齒輪與行星齒輪嚙合齒對因托架剛性影響,齒面負載分佈不均程度較大。行星齒輪組齒面經雙隆起修整後各嚙合齒對之齒面應力分佈可呈現左右對稱且最大應力落於齒面寬中間,嚙合過程應力與負載皆連續變化。在考慮相同誤差量影響下,托架偏心對行星齒輪負載分配與受載傳動誤差影響最大。

本論文所提出之行星齒輪組分析模型,可提供設計者有效分析嚙合過程齒面受載情況以及行星齒輪組齒面修整參數設計之依據,並可評估行星齒輪組之組件加工、組裝精度對傳動誤差與背隙之影響範圍,以及對行星齒輪間負載分配與受載傳動誤差之影響。
摘要(英) Compared with the parallel axis gear drive, the planetary gear drive, as a power-split mechanism, has the advantages of high power density, coaxial input and output shaft, as well as compact design. Therefore, it is widely applied in various transmissions. But in actual operation, the time-variant mesh stiffness as well as manufacturing and assembly errors will cause the uneven load sharing among multiple planet gears and the jump in variation of contact stress and shared load of contact tooth pairs of the planetary gear set. On the other hand, the deformation of the components in the planetary gear set will also result in uneven load distribution on the tooth flanks. The effective solution in the practice is to apply flank modification to enhance the load capacity and also to improve transmission performance. But the loaded contact characteristics of the drive have to be simulated in advance, so as to proceed suitable flank modification. The goal of the dissertation is thus to propose a loaded tooth contact analysis model for planetary gear drives, so as to simulate and analyze the contact characteristics of the engaged teeth under the real condition.

The equations of the three-dimensional modified flanks, manufactured by profile grinding, are at first derived in the dissertation. Considering the flank modification and the errors, a tooth contact analysis model (TCA) is developed for calculating the variables of the contact points. The transmission errors, the backlashes and the clearances in the planetary gear sets can be analyzed accordingly. The errors, involved in the TCA model, include the tooth thickness error of the planets, the position errors of the pin-hole, the eccentric errors of the carrier, the sun gear and the planet gears, as well as the angular misalignments of the planet pin.

The proposed loaded tooth contact analysis (LTCA) model for planetary gear sets, is based on the influence coefficient method, and involves the influences of the deformation of the teeth, the carrier, the sun gear and the planet pins. The topological conditions of the contact teeth calculated by the TCA model are also involved in the analysis, so as to simulate the Hertzian and Non-Hertzian tooth contact and to analyze the influences of the various manufacturing/assembly errors on the loaded tooth contact.

In order to verify the reliability of the proposed LTCA model, the analyzed results are compared with the finite element method (FEM). The results include the contact stress on the tooth flank along the face-width and the load sharing among each planet gear with the non-floating and floating sun gear. The comparative results show the same trend of contact stress and the difference with less than 10%. This indicates the model is in a good agreement with FEM.

A planetary gear set used in the practice is analyzed by the proposed TCA and LTCA model. The variation of the transmission errors and the backlashes of the planetary gear set is analyzed by applying the developed TCA approach, considering various cases with and without flank modification and errors. The variation of shared loads, contact stress and loaded transmission errors stress during gear meshing, as well as the contact pattern and stress distribution on each engaged tooth flank are analyzed by using the LTCA model. The non-Hertzian contact stresses of tip corner edge contact due to deformation and the face-end edge contact due to misalignment of the planet pin are also simulated. The influence of the errors on the load sharing among planets and the trajectory of the floating sun gear are also analyzed in the dissertation.

The analysis results show that tip corner contact occurs more likely in the planet-annulus gear pairs than sun-planet gear pairs. The contact stress on the flanks of planet-annulus gear pairs distributes more uneven due to the stiffness of the carrier. The stress distributions of the engaged tooth pairs are even and symmetric after flank modification. On the other hand, the eccentric error of the carrier has a larger influence on the load sharing among planet gear and loaded transmission errors.

The proposed LTCA model for planetary gear sets in the dissertation can simulate effectively and efficiently contact characteristics of engaged teeth with or without loading during gear meshing. The results can provide good evidence for designing flank modification of a planetary gear set. It can serve as the model for evaluating the influence of the manufacturing/assembly accuracy on loaded or unloaded transmission errors, backlash, as well as load sharing among planet gears.
關鍵字(中) ★ 行星齒輪組
★ 加工誤差
★ 組裝誤差
★ 負載分配
★ 負載分佈
★ 均載機構
★ 齒面修整
★ 有限元素分析
關鍵字(英) ★ planetary gear set
★ manufacturing error
★ assembly error
★ load sharing
★ load distribution
★ load balancing mechanism
★ flank modification
★ finite element method
論文目次 摘要 i
Abstract iii
謝誌 vi
目錄 vii
圖目錄 xi
表目錄 xix
符號對照表 xx
第1章 緒論 1
1.1 行星齒輪組之設計問題 1
1.1.1 機構設計特點 1
1.1.2 承載能力計算問題 2
1.1.3 行星齒輪組加工、組裝誤差之影響 3
1.1.4 均載機構之應用 4
1.2 研究背景 5
1.3 文獻回顧 7
1.3.1 行星齒輪組齒面之接觸分析TCA 7
1.3.2 行星齒輪組相關負載分析研究 8
1.3.3 受載齒面接觸分析方法 12
1.3.4 齒面修整研究 14
1.4 研究動機與目的 15
1.5 研究方向 17
1.6 論文架構 18
第2章 漸開線正齒輪齒面數學模型 20
2.1 漸開線正齒輪齒面方程式 20
2.1.1 正齒輪齒面方程式與法向量 20
2.1.2 環齒輪齒面方程式與法向量 21
2.2 行星齒輪齒面修整齒面方程式 22
2.2.1 齒面修整規劃 23
2.2.2 齒形修整方程式 24
2.2.3 齒線修整方程式 28
第3章 行星齒輪組接觸分析模型 32
3.1 偏差與偏心誤差類型 32
3.1.1 偏心誤差 33
3.1.2 行星齒輪軸偏斜誤差 34
3.1.3 行星齒輪之旋轉中心偏心誤差 35
3.2 行星齒輪組之組件座標系 36
3.2.1 太陽齒輪座標系 36
3.2.2 行星齒輪座標系 37
3.3 齒輪對之嚙合分析 39
3.3.1 環齒輪與行星齒輪之接觸分析 39
3.3.2 太陽齒輪與行星齒輪接觸分析 43
3.3.3 嚙合齒對數目計算 46
3.4 行星齒輪組嚙合特性 47
3.4.1 齒隙 47
3.4.2 背隙 48
3.4.3 傳動誤差 50
第4章 行星齒輪組受載齒面接觸分析模型 52
4.1 受載齒面接觸分析基本模型 52
4.1.1 單齒對接觸模型 53
4.1.2 多齒對接觸模型 56
4.2 行星齒輪組之負載變形 57
4.2.1 負載下變形之影響層級 57
4.2.2 多齒對耦合接觸模型 59
4.2.3 多齒輪對耦合接觸模型 60
4.2.4 負載計算矩陣方程式 64
4.3 影響係數建立 66
4.3.1 齒面接觸、輪齒彎曲變形、剪切變形 66
4.3.2 太陽齒輪軸扭轉變形 67
4.3.3 托架變形 68
4.3.4 托架銷軸彎曲變形 71
4.4 齒面間距計算 74
4.5 行星齒輪組具太陽齒輪浮動均載機構分析 75
第5章 分析案例 78
5.1 分析案例概述 78
5.2 分析之誤差參數設計 80
5.3 分析內容與條件設定 80
5.4 托架剛性分析 82
5.5 分析模型離散網格收斂分析 83
第6章 行星齒輪組受載齒面接觸分析模型與有限元素法分析結果比較 86
6.1 有限元素模型 86
6.2 行星齒輪組分析結果與比較 88
第7章 行星齒輪組嚙合接觸分析 92
7.1 無誤差下行星齒輪組接觸特性 92
7.1.1 傳動誤差與齒隙關係 92
7.1.2 齒面修整量對傳動誤差之影響 94
7.1.3 齒面修整量對背隙之影響 94
7.2 行星齒輪組具誤差下之傳動誤差 96
7.2.1 太陽齒輪偏心誤差 96
7.2.2 托架偏心誤差 101
7.2.3 行星齒輪偏心誤差 105
7.2.4 行星齒輪銷軸偏斜誤差 108
7.2.5 單一誤差下傳動誤差高低差值比較 110
7.2.6 綜合誤差 111
7.3 行星齒輪組具誤差下之背隙 116
7.3.1 太陽齒輪偏心誤差 116
7.3.2 托架偏心誤差 118
7.3.3 行星齒輪偏心誤差 120
7.3.4 行星齒輪銷軸偏斜誤差 122
7.3.5 綜合誤差 124
第8章 行星齒輪組受載齒面接觸分析 126
8.1 無誤差無齒面修整下受載齒面接觸分析 126
8.1.1 嚙合過程負載變化 127
8.1.2 嚙合過程應力變化 128
8.1.3 特定嚙合位置齒面接觸應力分佈 130
8.1.4 嚙合過程傳動誤差 134
8.2 無誤差下齒面修整參數對受載齒面接觸之影響 135
8.2.1 行星齒輪齒線隆起修整 135
8.2.2 太陽齒輪螺旋角修整 137
8.2.3 行星齒輪齒端修整 138
8.2.4 齒線修整後應力分佈 140
8.2.5 行星齒輪齒形修整 141
8.3 齒面修整下之受載齒面接觸分析 147
8.3.1 特定嚙合位置與誤差齒面接觸應力分佈 148
8.3.2 嚙合過程負載變化 151
8.3.3 嚙合過程應力變化 153
8.3.4 嚙合過程傳動誤差 154
8.3.5 行星齒輪間之負載分配 158
8.4 誤差下行星齒輪間之負載分配 159
8.4.1 太陽齒輪偏心誤差 159
8.4.2 托架偏心誤差 161
8.4.3 行星齒輪偏心誤差 162
8.4.4 行星齒輪軸偏差誤差 164
8.4.5 綜合誤差 166
8.4.6 小結 167
8.5 誤差下之受載傳動誤差 168
8.5.1 太陽齒輪偏心誤差 168
8.5.2 托架偏心誤差 170
8.5.3 行星齒輪偏心誤差 171
8.5.4 行星齒輪軸偏差誤差 173
8.5.5 綜合誤差 174
8.5.6 小結 174
8.6 行星齒輪組具太陽齒輪浮動受載齒面接觸分析 175
8.6.1 行星齒輪切向銷孔位置誤差 175
8.6.2 托架偏心誤差 177
8.6.3 行星齒輪偏心誤差 178
第9章 結論與未來展望 181
9.1 結論 181
9.2 未來展望 184
參考文獻 185
附錄 組件誤差規範 195
作者簡介 198
參考文獻 1 E. Hau, “Windkraftanlagen, ” Springer Verlag, 2008.
2 ISO 6336: Calculation of load capacity of spur and helical gears, 2006.
3 J. Looman, “Zahnradgetriebe- grundlagen, konstruktionen, anwendungen in fahrzeugen,” Springer, Auflage, 1996.
4 S.-J. Tsai, S.-Y. Ye, Y.-Y. Yu and J.-T. Tseng, “Design and analysis of the planetary gear drive with flexible pins for wind turbines,” EWEA 2012 Europe’s premier wind energy event, Copenhagen, Denmark, April 2012.
5 A. Bodas and A. Kahraman, “Influence of carrier and gear manufacturing errors on the static load sharing behavior of planetary gear sets,” JSME International Journal Series C, Vol. 47, pp. 908-915, 2004.
6 ISO 1328-1: Definitions and allowable values of deviations relevant to flanks of gear teeth, 1995.
7 G. Niemann and H. Winter, “Maschinenelemente, band 2: getriebe allgemein, zahnradgetriebe - grundlagen, stirnradgetriebe,” Springer-Verlag Berlin Heidelberg, 2003.
8 D. Vecchiato, “Tooth contact analysis of a misaligned isostatic planetary gear train,” Mechanism and Machine Theory, Vol. 41, No. 6, pp. 617-631, 2006.
9 F.L. Litvin, D. Vecchiato, A. Demenego, E. Karedes, B. Hansen and R. Handschuh, “Design of one stage planetary gear train with improved conditions of load distribution and reduced transmission errors,” Journal of Mechanical Design, Vol. 124, No. 4, pp. 745-752, 2002.
10 S. Yanabe, M. Yoshino and N. Yamagishi, “Abnormal vibration of sun gear shaft in planetary gear train,” Bulletin of JSME, Vol. 61, No. 584, pp. 1271-1278, 1995.
11 M. Yoshino, S. Yanabe and H. Sato, “Self centering characteristics of floating sun gear in a star type planetary gear train,” Transactions of the Japan Society of Mechanical Engineers. C, Vol. 63, no. 611, pp. 82-89, 1997.
12 M. Yoshino, “The influence of the parts error on torsional resonance of star-type planetary gear train,” Japan Society of Mechanical Engineers, C 78(789), 2012.
13 H. Kurashina and M. Yashino, “Self centering process of the star type planetary gear train with four planetary gears,” Journal of the Japan Association for College of Technology, Vol. 16(3), pp. 29-34, 2011.
14 M. Yoshino, “Simulation on abnormal vibration of floating sun gear in star-type planetary gear train,” Transactions of the Japan Society of Mechanical Engineers. C 66(648), pp. 2510-2517, 2000.
15 T. Hidaka, Y. Terauchi and K. Dohi, “On the relation between the run-out errors and the motion of the center of sun gear in a stoeckicht planetary gear,” Bull. JSME, Vol. 22, pp. 748-754, 1979.
16 S.-J. Tsai, H.-L. Huang and S.-Y. Ye, “Tooth contact analysis of planetary gear sets with a floating sun gear,” The 2nd IFToMM Asian Conference on Mechanism and Machine Science, Tokyo, Japan, 2012.
17 S.-J. Tsai, G.L. Huang and S.-Y. Ye, “Gear meshing analysis of planetary gear sets with a floating sun gear,” Mechanism and Machine Theory, Vol. 84, pp. 145-163, 2015.
18 F. L. Litvin and A. Fuentes, “Gear geometry and applied theory,” Cambridge University Press, Second Edition, 2004.
19 A. Kahraman, “Load sharing characteristics of planetary transmissions,” Mechanism and Machine Theory, Vol. 29, No. 8, pp. 1154-1165, 1994.
20 A. Kahraman, “Natural modes of planetary gear trains,” Journal of Sound and Vibration, v 173, n 1, pp. 125-130, 1994.
21 A. Kahraman, “Planetary gear train dynamics,” Journal of Mechanical Design, v 116, n 3, pp. 713-720, 1994.
22 H. Ligata, A. Kahraman and A. Singh, “A closed-form planet load sharing formulation for planetary gear sets using a translational analogy,” Transactions of ASME, Vol. 131, pp. 0210071-02100717, 2009.
23 H. Ligata, A. Kahraman and A. Singh, “An experimental study of the influence of manufacturing errors on the planetary gear stresses and planet load sharing,” ASME Journal of Mechanical Design, Vol. 130, p. 041701, 2008.
24 A. Kahraman and S. Vijayakar, “Effect of internal gear flexibility on the quasi-static behavior of a planetary gear set,” ASME Journal of Mechanical Design, Vol. 123, pp. 408-415, 2001.
25 A. Kahraman, A. A. Kharazi and M. Umrani, “A deformable body dynamic analysis of planetary gears with thin rims,” Journal of Sound and Vibration, v 262, n 3, pp. 752-68, 2003.
26 B. Boguski, A. Kahraman and T. Nishino, “A new method to measure planet load sharing and sun gear radial orbit of planetary gear sets,” Journal of Mechanical Design, Vol. 134, p. 071002-1, 2012.
27 M. Inalpolat and A. Kahraman, “A dynamic model to predict modulation sidebands of a planetary gear set having manufacturing errors,” Journal of Sound and Vibration, v 329, n 4, pp. 371-393, February 15, 2010.
28 A. Singh, A. Kahraman and H. Ligata, “Internal gear strains and load sharing in planetary transmissions: model and experiments,” Journal of Mechanical Design, v 130, p. 072602-1, July 2008.
29 D. C. Talbot, A. Kahraman and A. Singh, “An experimental investigation of the efficiency of planetary gear sets,” ASME Journal of Mechanical Design, Vol. 134, pp. 1-7, 2012.
30 C. Yuksel and A. Kahraman, “Dynamic tooth loads of planetary gear sets having tooth profile wear,” Mechanism and Machine Theory, v 39, n 7, pp. 695-715, July 2004.
31 A. Kahraman and H. Ding, , “A methodology to predict surface wear of planetary gears under dynamic conditions,” Mechanics Based Design of Structures and Machines, v 38, n 4, pp. 493-515, October 2010.
32 N. D. Leque and A. Kahraman, “A three-dimensional load sharing model of planetary gear sets having manufacturing errors,” ASME 2015 Power Transmission and Gearing Conference, DETC2015-47470, p. V010T11A046, Boston USA, 2015.
33 A. Singh, “Application of a system level model to study the planetary load sharing behavior,” ASME, Journal of mechanical design, Vol. 127, No. 12, pp. 469-476, 2005.
34 T. Hidaka, N. Sugimoto, and T. Ishida, “Effects of errors of elements on load distribution in planetary gears with various load equalizing mechanisms,” Japanese Mechanical Academic Society Collection, Vol.52, No. 480, pp. 2200-2206, 1986.
35 T. Hidaka, Y. Terauchi and K. Nagamura, “Dynamic behavior of planetary gear-7th report: Influence of the thickness of ring gear,” Bull. JSME, Vol. 22, pp. 1142-1149, 1979.
36 T. Hidaka and Y. Terauchi, “Dynamic behavior of planetary gear-1st report: Load distribution in planetary gear,” Bull. JSME, Vol. 19, pp. 690-698, 1976.
37 T. Hidaka, Y. Terauchi and K. Ishioka, “Dynamic behavior of planetary gear-2nd report: displacement of sun gear and ring gear,” Bulletin of the JSME-Japan Society of Mechanical Engineers, Vol.19 , No. 138, pp. 1563-1570, 1976.
38 T. Hidaka, Y. Terauchi and K. Nagamura, “Dynamic behavior of planetary gear—6th report, influence of meshing-phase,” Bull. JSME, 22, pp. 1026-1033, 1979.
39 T. Hidaka, T. Ishida and H. Wang, “Load equalizing mechanism for bicycle planetary gear system,” Memoirs of the Faculty of Engineering, Yamaguchi University, Vol. 41(2), pp. 225-230, 1991.
40 蔡錫錚、葉湘羭、黃冠霖, “以解析法分析製造誤差對行星齒輪傳動機構負載分配之影響”,2010年台灣風能學術研討會論文集,12/17,2010.
41 蔡錫錚、黃冠霖,“太陽齒輪浮動之行星齒輪機構嚙合分析”,中國機械工程學會第二十六屆全國學術研討會論文集,11/20~21,2009
42 S.-J. Tsai, S.-Y. Ye and H.-L. Huang, “An approach for analysis of load sharing in planetary gear drives with a floating sun gear,” Proceedings of the ASME Design Engineering Technical Conference, v 8, pp. 249-258, 2011.
43 S.-J. Tsai, H.-L. Huang, and S.-Y. Ye, “An analytical approach for load sharing analysis of planetary gear drives,” 13th World Congress in Mechanism and Machine Science, Guanajuato, México, pp. 19-25, June, 2011.
44 S.-J. Tsai, H.-L. Huang and S.-Y. Ye, “Tooth contact analysis of planetary gear sets with a floating sun gear,” The 2nd IFToMM Asian Conference on Mechanism and Machine Science, Tokyo, Japan, 2012.
45 葉湘羭,“具行星齒輪浮動之行星齒輪機構靜態負載分析”,國立中央大學機械工程學系碩士論文,2010。
46 B. Boguski, A. Kahraman, and T. Nishino, “A new method to measure planet load Sharing and sun gear radial orbit of planetary gear sets,” ASME Journal of Mechanical Design, Vol. 134, pp. 0710021-0710028, 2012.
47. 曾瑞堂、張永源、蔡鋒穎, “具有Flexible Pin均載機構之變形分析”,台灣風能學術研討會,2008/12/13。
48 謝昆儒,曾瑞堂,張永源,蔡鋒穎, “具有Flexible Pin均載機構之行星齒輪組變形分析”。台灣風能學術研討會,2009/12/11.
49 A. N. Montestruc and P. E. “Influence of planet pin stiffness on load sharing in planetary gear drives,” ASME Journal of Mechanical Design, Vol. 133, pp. 0145011-0145017, 2011.
50 吳思漢,”近似線接觸型態之歪斜軸漸開線錐形齒輪對齒面接觸強度之研究”,國立中央大學機械工程學系博士論文,2009。
51 S.-H. Wu and S.-J. Tsai, “Contact stress analysis of skew conical involute gear drives in approximate line contact,” Mechanism and Machine Theory, Vol. 44, No. 9, pp. 1658-1676, 2009.
52 M. Iglesias, A. Fernández, A. de Juan, A. Díez, P. García and F. Viadero, “Planet eccentricity error on a planetary gear transmission: influence on load sharing,” Proceedings of the 9th IFToMM International Conference on Rotor Dynamics, Vol. 21, pp 1381-1390, 2015.
53 M. Iglesias, A. Fernández, A. de Juan, A. Díez, P. García and F. Viadero, “Planet position error on a planetary gear transmission: influence on load sharing and transmission,” Frontiers of Mechanical Engineering, Vol. 8, pp 80-87, 2013.
54 V. Abousleiman, P. Velex and S. Becquerelle, “Modeling of spur and helical gear planetary drives with flexible ring gears and planet carriers,” Journal of Mechanical Design, Vol. 129, pp. 95-106, 2006.
55 H. Dinner, “Tooth contact analysis in planetary gears,” EES KISSsoft GmbH, 2010.
56 B. Mahr and U. Kissling, “Comparison between different commercial gear tooth contact analysis software packages,” KISSsoft Documentation.
57 J. Börner, N. Kurz and F. Joachim, “Effective analysis of gears with the program LVR (Stiffness Method),” VDI-Berichte No. 1665, vol. 2, pp. 721-736, 2002.
58 B. Neubauer, M. Otto and K. Stahl, “Efficient calculation of load distribution and design of tooth flank modifications in planetary gear systems,” VDI-Berichte, Vol. 1, pp. 549-558, 2015.
59 H. Linke, “Tooth root capacity of internal gearings in planetary gear,” The JSME Internal Conference on Motion and Power Transmissions, MPT2001-Fukuoka, pp. 223-228, 2001.
60 H.Linke, U. Trempler and F. Baumann, “Analysis on the stress of toothings of planetary gearings,” VDI Berichte, n 1904 I, pp. 345-355, 2005.
61 S. Berthold, S. Tobias and H. Thomas, “Multibody system simulation of drive trains,” Bulk Solids Handling, v 23, n SPEC. ISS. 2, pp. 36-44, September 2003.
62 B. Schlecht, S. Tobias and D. Jens, “Simulation of torsional vibrations or multibody simulation - Which technique does the wind power industry need for solving the present-day problems,” Proceedings of the ASME Design Engineering Technical Conference, v 4 A, pp. 325-332, 2003.
63 T. Schulze and C. Hertman-Gerlach, “Calculation of load distribution in planetary Gears for an effective gear design process,” AGMA technical paper, pp. 1-11, 2010.
64 T. Schulze and C. Hartmann-Gerlach, “Design and optimization of planetary gears under consideration of all relevant influences,” VDI Berichte, Vol.2108 No.2, pp. 769-780, 2010.
65 R. W. Vonderschmidt, “Tooth forces in spur planetary gears increases in load due to uneven load distribution on the planet gears and internal dynamic forces,” No. 82.5 of the series (ISBN: 3 - 89194-022 - X), 1982.
66 W. Winkelmann, “Load sharing in planetary gears,” No. 87.3 of the series (ISBN - 3 - 89194-067 - X), 1987.
67 W. Barth, “Tooth root stresses and deformations of annular wheels at planetary gears,” No. 87.5 of the series (ISBN - 3 - 89194-069 - 6), 1987.
68 M. A. Karademir, “Tooth stiffness in planetary gears,” No. 89.9 of the series (ISBN - 3 - 89194-083 - 1), 1989.
69 M. Christ, “Computer software for the integrated design and calculation of planetary gears,” No. 99.1 of the series (ISBN - 3-89194 - 140 - 4), 1999.
70 J. Vriesen, “Calculating tooth corrections for planetary gears under consideration of the deformations of planet carrier and ring gear,” Nr. 01.5 aus der Schriftenreihe ( ISBN - 3 - 89194 - 155 - 2 ), 2001.
71 W. Predki and J. W. Vriesen, “Calculating gear tooth corrections for planetary gears,” VDI-Berichte, Vol. 2, pp. 311-326, 2005.
72 J. Pears, A. Smith, and S. Curtis, “A software tool for prediction of planetary gear transmission error,” VDI-Berichte , Vol. 2, pp. 357-372, 2005.
73 Kissling, U., “Effects of profile corrections on peak-to-peak transmission error,” Gear Technology, pp. 52-61, 2010
74 M. Beghini “A method to define profile modification of spur gear,” Proceedings of the Fall Technical Meeting of the American Gear Manufacturers Association, Milwaukee, Wis, USA, October 2004.
75 K. Markovic and M. Fanulovic, “Contact stresses in gear teeth due to tip relief profile modification,” Eng. Rev., pp. 19-26, 2011.
76 G. Mallesh et al., “Effect of tooth profile modification in asymmetric spur gear tooth bending stress by finite element analysis,” 14th National Conference on Machines and Mechanisms, pp. 62-67, NIT, Durgapur, India, 2009.
77 A. Kahraman, P. Bajpai and A. E. Anderson, “Influence of tooth profile deviations on helical gear wear,” ASME Journal of Mechanical Design, Vol. 127, pp. 656-663, 2005.
78 H.-H. Lin, “Profile modification to minimize spur gear dynamic loading,” NASA technical memorandum 89901, 1988.
79 M. Hotait and A. Kahraman, “Experiments on root stresses of helical gears with lead crown and misalignments,” ASME journal of Mechanical Design, Vol. 130, pp. 0745021-0745025, 2008.
80 M. Umeyama, and M. Kato and K. Inoue, “Transmission error of a helical gear pair with modified tooth surfaces -1st Report: Actual Contact Ratio and the Effects of the Load on the Transmission Error,” Transactions of the Japan Society of Mechanical Engineers, C, Vol. 62, pp. 4332-4340, 1996.
81 K. Mao, “Gear tooth contact analysis and its application in the reduction of fatigue wear,” Waer, Vol. 262, pp. 1281-1288, 2007.
82 H.-Y. Yeh, S.-J. Tsai and R.-J. Kuo, “Contact characteristics of spur gear pairs with and without tip relieves along and beyond the normal line of action,” Proceedings of 2014 IFToMM Asian Conference on Mechanism and Machine Science, Tianjin, China, July 9-10, 2014.
83 郭仁傑, “齒頂修整之正齒輪對齒面受載接觸分析”,國立中央大學機械工程學系碩士論文,2013。
84 DIN 6960: Definitions, parameters and equations for involute cylindrical gears and gear pairs, 1987.
85. T. Placzek, “Load distribution and flank correction in spur and helical gears,” Dissertation of Technische Universität München/Germany, 1988.
86. H. Winter, K. Stölzle and T. Placzek, “Topological tooth modifications and contact patterns of spur and helical gears,” AGMA Paper, 1989.
87. DIN 3964:Deviations of Shaft Centre Distances and Shaft Position Tolerances of Casings for Cylindrical Gears, 1980.
88. DIN 3963:Tolerances for Cylindrical Gear Teeth; Tolerances for Working Deviations, 1978.
指導教授 蔡錫錚(Shyi-Jeng Tsai) 審核日期 2016-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明