參考文獻 |
[1] Chino, P., Duret, F., Voinis, S., 1999. The Centre de la Manche Disposal Facility: Entering into the Institutional Control Period. Waste Management.
[2] Dutzer, M., & Nicolas, M., 1997. Operating the Centre de l’Aube. In Planning and Operation of Low Level Waste Disposal Facilities (Proc. Symp. Vienna, 1996), IAEA, Vienna, 243-247.
[3] Audet, R., 1976. The Oklo nuclear reactors: 1800 million years ago. Ming Studies, 72-84.
[4] Mossman, D. J., Gauthier-Lafaye, F., Dutkiewicz, A., Brüning, R. ,2008. Carbonaceous substances in Oklo reactors—analogue for permanent deep geologic disposal of anthropogenic nuclear waste. Reviews in Engineering Geology, 19, 1-13.
[5] Ojovan, M. I., Lee, W. E., 2005. An Introduction to Nuclear Waste Immobilisation, Elsevier, Amsterdam, 315.
[6] NEA, S., 2003. 2: Belgian R&D Programme on the Deep Disposal of High-level and Longlived Radioactive Waste: An International Peer Review.
[7] National Research Council (US). Committee on Disposition of High-Level Radioactive Waste Through Geological Isolation. (2001). Disposition of high-level waste and spent nuclear fuel: the continuing societal and technical challenges. National Academies Press, 144-126.
[8] Rahn, R. O., Upton, A. C., 2007. Radiological risk assessment. Risk assessment for environmental health, 239-283.
[9] Baek, I., Pitt, W. W., 1996. Colloid-facilitated radionuclide transport in fractured porous rock. Waste Management, 16(4), 313-325.
[10] Chen, C. T., Li, S. H., 1997. Radionuclide transport in fractured porous media—Analytical solutions for a system of parallel fractures with a constant inlet flux. Waste Management, 17(1), 53-64.
[11] Inoue, Y., & Kaufman, W. J. (1963). Prediction of Movement of Radionuclides in Solution Through Porous Media. Health Physics, 9(7), 705-715.
[12] Van Genuchten, M. T., & Wierenga, P. J., 1976. Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Science Society of America Journal, 40(4), 473-480.
[13] Nair, R. N., Sunny, F., & Manikandan, S. T., 2010. Modelling of decay chain transport in groundwater from uranium tailings ponds. Applied mathematical modelling, 34(9), 2300-2311.
[14] 大井貴夫, 2011.放射性廃棄物地層処分の人工バリアシステムの応答特性を把するた1めの近似解析解の導出,NUMO-TR-10-06.
[15] Zavoshy, S. J., Chambre, P. L., Ahn, J., Pigford, T. H., Lee, W. W. L., 1988. Steady-state radionuclide transfer from a cylinder intersected by a fissure (No. LBL-23986; UCB-NE-4113). Lawrence Berkeley Lab., CA (USA)
[16] Dubner, H., Abate, J., 1968. Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. Journal of the ACM (JACM), 15(1), 115-123.
[17] Simon, R. M., Stroot, M. T., Weiss, G. H., 1972. Numerical inversion of Laplace transforms with application to percentage labeled mitoses experiments. Computers and Biomedical Research, 5(6), 596-607.
[18] Wang, Q., Zhan, H., 2015. On different numerical inverse Laplace methods for solute transport problems. Advances in Water Resources, 75, 80-92.
[19] 2000. H12: Project to Establish the Scientific and Technical Basis for HLW Disposal in Japan, Supporting Report 2, Repository Design and Engineering Technology, Second Progress Report on Research and Development for the Geological Disposal of HLW in Japan, Japan Nuclear Cycle Development Institute (JNC). JNC TN1410 2000–003
[20] Sheppard, M. I., Thibault, D. H. (1990). Default soil solid/liquid partition coefficients, KdS, for four major soil types: a compendium. Health Physics, 59(4), 471-482.
[21] Sudicky, E.A., 1989. The Laplace Transform Galerkin Technique: A time‐continuous finite element theory and application to mass transport in groundwater. Water Resources Research, 25(8), 1833-1846.
[22] Moridis, G.J., D.L. Reddell,, 1991. The Laplace transform finite difference method for simulation of flow through porous media. Water Resources Research, 27(8), 1873-1884. |