博碩士論文 103323604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:112 、訪客IP:18.190.219.238
姓名 薩敏娜(Nurlia Pramita Sari)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容
(Three-Dimensional Electrode Self-Assembly of Electrochemical Exfoliated Graphene for High-Performance Flexible Supercapacitor)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究★ 石墨烯之複合電極於全固態纖維式微型超電容的研究
★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究
★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究
★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性
★ 懸空石墨烯之特性研究與應用★ 結合分子臨場吸附與電化學剝離法製備高品質石墨烯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本研究製作一種結合多孔性的自組裝石墨烯電極於製作可撓式超級電容。在製作上,使用電化學剝離石墨烯並透過凍乾技術製備出三維石墨烯電極。本實驗探討在不同的石墨烯濃度下此大型多孔性結構對電容性能的影響,而在此裝置中使用的是膠態電解液(1M H2SO4-PVA)。實驗發現孔洞的大小與溶液濃度有關,孔洞大小4.88μm、 1.19μm、1.02μm、0.39μm 分別對應到溶液濃度 10 mg/mL、 15 mg/mL、 20 mg/mL跟 25 mg/mL。
結果顯示低石墨烯濃度(10mg/mL)製備的電極在水系電解液(6M KOH)跟膠態電解液(1M H2SO4-PVA)的比電容值分別是45.40 F/g跟23.89 F/g比起在高濃度(25 mg/mL)所製備的電極呈現較高的電容值(水系電解液:31.85 F/g 跟膠態電解液: 10.43 F/g )。可以明確的發現孔洞的擴大有效提供升的電容值,增加離子的遷移性。
此外,由實驗中可以發現膠態電解質的預浸入多孔電極之方法,可以用於提升可撓式超級電容的性能。而非預浸入式所製作的電容,其比電容值為17.23 F/g (比預浸入式的低27.91%),造成此現象的主要原因是電解液可以有效浸入電極內部,提升離子擴散性。本實驗比較電化學剝離石墨烯與還原氧化石墨烯電容的性能,發現還原氧化石墨烯由於其較低的導電性(rGO片電阻: 7.07x10-3Ω/sq;EC-graphene片電阻: 6.60 x10-3Ω/sq)與較少的含氧官能基團,使得電化學剝離石墨烯電容性能比較高。可撓式電容在彎曲測試中呈現高度的穩定性,在彎折180o後可保有94%的電容值,且在經過50次彎折仍有90%的電容性能保存。本實驗提出一個具有可撓性、環保且具量產性的高效能石墨烯超電容。
摘要(英) In this study, we report a flexible supercapacitor including a unique macroporosity self-assembly of graphene as electrode. The graphene supercapacitor made by three-dimensional graphene electrodes were prepared by electrochemical exfoliated graphene (EC-graphene) follow by freeze-dried and annealed process. Here we study the effects of macroporous structured electrodes on capacitor performance by altering the graphene concentration. Moreover, flexible supercapacitor devices made by such unique electrodes were demonstrated by using gel electrolyte (1M H2SO4 /PVA).
We found out the pore size of 3D graphene electrodes correlated to the solution concentration of initial graphene suspension, where the pore size were 4.88μm, 1.19μm, 1.02μm, 0.39μm corresponding to 10 mg/mL, 15 mg/mL, 20 mg/mL, and 25 mg/mL, respectively.
The result shows that graphene electrode exhibit superior high specific capacitance of 45.40 F/g in liquid electrolyte (6M KOH) and 23.89 F/g in gel electrolyte (1M H2SO4/PVA) at low concentration of graphene (10mg/mL), which was higher than that (31.85 F/g in liquid electrolyte and 10.43 F/g in gel electrolyte) of samples prepared at high concentration (25 mg/mL). The device shows excellent rate performance and cycling stability. It was clearly seen the larger pore sized electrodes, result in higher capacitance which was due to few-layered stacked graphene creating more accessible surface area and better kinetic process of ion diffusion.
In addition, it can be seen that the dipping method can be used to gain higher performance of flexible supercapacitor. The specific capacitance of EC-graphene without dip is 17.23 F/g (27.91% lower than dipping method). This can be caused by higher efficient ion diffusion in sample dips into dilute PVA-H2SO4 electrolyte due to more time electrolyte immersed into electrode. Moreover, it was found out that EC-graphene shows higher performance than conventional used reduced graphene oxide(rGO) (43.45 F/g in 6M KOH electrolyte), which was attributed to its poor electrical conductivity (sheet resistance of rGO 7.07x10-3 Ω/sq while EC-Graphene 6.60 x10-3 Ω/sq) and lower oxygen functional groups.
The flexible supercapacitor, exhibit superior working stability during the bending testing, where 94% of capacitance was preserved for bending angle up to 180o and 90% after 50 times bending cycles. This work introduces a new concept of flexible, environment friendly, large scale production, and high performance graphene-based supercapacitors that could have a way for practical applications in energy devices.
關鍵字(中) ★ 撓式超級電容
★ 利用電化學剝離石墨
★ 储能
關鍵字(英) ★ Flexible supercapacitor
★ Electrochemical exfoliated graphene
★ Energy storage
論文目次 摘要 ii
Abstract iii
Table of contents v
List of figures vii
List of tables x
1. Introduction 1
1.1 Supercapacitor 2
1.2 Graphene as electrode of supercapacitor 3
1.2.1 Definition and properties 3
1.2.2 Electrochemical exfoliated graphene 4
1.2.3 Three-dimensional graphene 5
1.3 Electrolyte 6
2. Motivation 9
3. Method 10
3.1 Experimental flowchart 10
3.2 Three-dimension graphene electrode 10
3.2.1 Synthesis of electrochemical exfoliation grapheme method 10
3.2.2 Preparation of 3D electrode by electrochemical exfoliated graphene (EC-graphene) 11
3.2.3 Preparation of electrolyte 11
3.2.4 Coin cell made by EC-graphene 12
3.2.5 Flexible supercapacitor integrated by EC-graphene 12
3.3 Material characterizations 13
3.4 Electrochemical measurement 14
3.5 Sample definition 15
4. Result and discussions 16
4.1 Morphology 16
4.2 Electrochemical performance 23
4.2.1 Before and after annealing 23
4.2.2 6M KOH aqueous electrolyte 25
4.2.3 1M H2SO4gel electrolyte 33
4.2.4 The comparison of super capacitor of electrodes made by EC-Graphene and reduction graphene oxide (rGO) 42
4.2.5 The comparison of this work and previous study 44
4.3 Demonstration of flexible graphene supercapacitor 45
5. Conclusion 47
References xi
參考文獻 [1]Zhang, S. and Pan, N. (2015) ′Supercapacitors Performance Evaluation′, Advanced Energy Materials, 5(6).
[2]SNE Research, Ultra Capacitor – Recent Technology and Market Forecast (2020) , October 2012
[3]Ivanovskii, A. L. (2012) ′Graphene-based and graphene-like materials′, Russian Chemical Reviews, 81(7), pp. 571-605.
[4] Chen, J., Li, C. and Shi, G. (2013) ′Graphene Materials for Electrochemical Capacitors′, J Phys Chem Lett, 4(8), pp. 1244-53.
[5] Simon, P. and Gogotsi, Y. (2008) ′Materials for electrochemical capacitors′, nature materials, 7, pp. 845-854.
[6]MAIER, J. (2005) ′Nanoionics: ion transport and electrochemical storage in confined systems′, ibid.4, pp. 805-815.
[7]Wang, G., Zhang, L. and Zhang, J. (2012) ′A review of electrode materials for electrochemical supercapacitors′, Chem Soc Rev, 41(2), pp. 797-828.
[8] Allen, M. J., Tung, V. C. and Kaner, R. B. (2010) ′Honeycomb Carbon: A Review of Graphene′, Chem. Rev, 110, pp. 132-145.
[9] Edwards, R. S. and Coleman, K. S. (2013) ′Graphene synthesis: relationship to applications′, Nanoscale, 5(1), pp. 38-51.
[10] Ambrosi, A., Chua, C. K., Bonanni, A. and Pumera, M. (2014) ′Electrochemistry of graphene and related materials′, Chem Rev, 114(14), pp. 7150-88.
[11]Jung, S. M., Mafra, D. L., Lin, C. T., Jung, H. Y. and Kong, J. (2015) ′Controlled porous structures of graphene aerogels and their effect on supercapacitor performance′, Nanoscale, 7(10), pp. 4386-93.
[12] Liu, J., Notarianni, M., Will, G., Tiong, V. T., Wang, H. and Motta, N. (2013) ′Electrochemically exfoliated graphene for electrode films: effect of graphene flake thickness on the sheet resistance and capacitive properties′, Langmuir, 29(43), pp. 13307-14.
[13] Zhang, L., Zhang, F., Yang, X., Long, G., Wu, Y., Zhang, T., Leng, K., Huang, Y., Ma, Y., Yu, A. and Chen, Y. (2013) ′Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors′, Sci Rep, 3, pp. 1408.
[14] Chang, J.-H., Hung, Y.-H., Luo, X.-F., Huang, C.-H., Jung, S., Chang, J.-K., Kong, J. and Su, C.-Y. (2016) ′The hierarchical porosity of a three-dimensional graphene electrode for binder-free and high performance supercapacitors′, RSC Adv., 6(10), pp. 8384-8394.
[15] Kowsari, E. (2015) ′High-Performance Supercapacitors Based on Ionic Liquids and a Graphene Nanostructure′, Ionic Liquids - Current State of the Art, pp. 505-542.
[16] Ohno, H. and FUKUMOTO, K. (2007) ′Progress in Ionic Liquids for Electrochemical Reaction Matrices′, Electrochemistry, 76, pp. 16-76.
[17] Snook, G. A., Kao, P. and Best, A. S. (2011) ′Conducting-polymer-based supercapacitor devices and electrodes′, Journal of Power Sources, 196(1), pp. 1-12.
[18] Galiński, M., Lewandowski, A. and Stępniak, I. (2006) ′Ionic liquids as electrolytes′, Electrochimica Acta, 51(26), pp. 5567-5580.
[19] Kaempgen, M., Chan, C. K., Cui, J. M. and Gruner, G. (2009) ′Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes′, NANO LETTERS, 9(5), pp. 1872-1876.
[20] Xu, Y., Lin, Z., Huang, X., Liu, Y., Huang, Y. and Duan, X. (2013) ′Flexible Solid-State Supercapacitors Based on Three-Dimensional Graphene Hydrogel Films′, ACS Nano, 7(5), pp. 4042-4049.
[21]Moon, W. G., Kim, G. P., Lee, M., Song, H. D. and Yi, J. (2015) ′A biodegradable gel electrolyte for use in high-performance flexible supercapacitors′, ACS Appl Mater Interfaces, 7(6), pp. 3503-11.
[22] Su, C.-Y., Lu, A.-Y., Xu, Y., Chen, F.-R., Khlobystov, A. N. and Li, L.-J. (2011) ′High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation′, ACS Nano, 5(3), pp. 2332–2339.
[23] Secor, E. B., Prabhumirashi, P. L., Puntambekar, K., Geier, M. L. and Hersam, M. C. (2013) ′Inkjet Printing of High Conductivity, Flexible Graphene Patterns′, J Phys Chem Lett, 4(8), pp. 1347-51.
[24]Su, C.-Y., Xu, Y., Zhang, W., Zhao, J., Liu, A., Tang, X., Tsai, C.-H., Huang, Y. and Li, L.-J. (2010) ′Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors′, ACS Nano, 4(9), pp. 5285–5292.
[25] Su, C.-Y., Xu, Y., Zhang, W., Zhao, J., Tang, X., Tsai, C.-H. and Li, L.-J. (2009) ′Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers′, Chemistry of Materials, 21(23), pp. 5674-5680.
[26]Ye, S., Feng, J. and Wu, P. (2013) ′Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode′, ACS Appl Mater Interfaces, 5(15), pp. 7122-9.
[27]Chen, C.-M., Zhang, Q., Yang, M.-G., Huang, C.-H., Yang, Y.-G. and Wang, M.-Z. (2012) ′Structural evolution during annealing of thermally reduced graphene nanosheets for application in supercapacitors′, Carbon, 50(10), pp. 3572-3584.
[28] Meng, C., Liu, C., Chen, L., Hu, C. and Fan, S. (2010) ′Highly flexible and all-solid-state paperlike polymer supercapacitors′, Nano Lett, 10(10), pp. 4025-31.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2016-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明