博碩士論文 103323070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.140.188.16
姓名 陳柏宇(Bo-Yu Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 生長1600kg多晶矽晶錠過程之熱流場與雜質輸送研究及爐體優化
(Furnace optimization of Thermal Flow Field and Impurity Transport during the Growth of 1600 kg Multicrystalline Silicon Ingots)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 直接固化法因成本低且製造過程簡單,是生產多晶矽晶錠最常用的方法。
近幾年來DSS法已發展成可生產大尺寸多晶矽晶錠,因此有必要藉由模擬
將爐體設計做優化改善,提升多晶矽晶錠之品質。
本研究使用有限體積法(FVM)進行多晶矽生長過程的暫態數值模擬,主要探討溶湯中的熱流場、固液界面形狀以及氧、碳雜質的分佈。模擬所使用之G6、G8爐體尺寸大小、材料性質、加熱器輸出功率以及絕緣層的開度均採用矽晶公司實際生長晶錠時所量測到的數據。
在G6爐體優化方面,將石墨層側邊挖空一半並置換為絕緣塊材料,可降低靠近坩堝壁區域固液界面凹率,使固液介面形狀更為平坦。在爐體內部加裝導引氬氣流動之導流板,可增加靠近自由液面處的流速,降低氧、碳雜質濃度。修改爐體之支柱設計,將支柱數目與中心距離作調整並加大支柱直徑,可使軸向溫梯增加,晶錠固化時間縮短,使碳雜質濃度減少。將以上幾種修改設計結合絕緣塊與保溫塊做成一整合型爐體,可使固液界面形狀平整度增加、大幅降低氧與碳雜質濃度,並減少加熱器功率的消耗,有助於提升多晶矽晶錠的品質。
在G8爐體與G6爐體的比較中,可發現G8爐體的固液界面形狀更為平整,並且氧、碳雜質的濃度差異不大,顯示G8爐體在未來能具有相當大的優勢。
將G8爐體內部增加絕緣塊與保溫塊,可增加軸向溫度梯度,使固液界面維持微凸的形狀,有利於晶體的生長,此外可減少加熱器的輸出功率,達到節能的效果。
摘要(英) Directional Solidification method (DSS) is a simple method to produce the ingots and it has low cost. So this method is the most commonly used to growth the mc-si ingots.
In recent years, DSS method can produce the large size mc-si ingots. Therefore, it is necessary to optimize the furnace structure to improve the mc-si ingots quality.
In this study, we used FVM method transient numerical simulation to investigate the distribution of the thermal flow field, interface shape, oxygen and carbon impurities distribution in the melt. The experimental data such as G6 and G8 furnace size, material, heater power consumer and insulation height are provided by company.
In the G6 furnace optimization, I removed a half side graphite layer and replaced as an insulation block. It can decrease the interface shape concave near the crucible region. The interface shape will be more flat. Add the deflector to guide the argon gas flow in the furnace can increase the velocity of flow near the free surface. It can significantly reduce the concentration of oxygen and carbon. Enlarge the volume of supports and change the distance between supports and the center point of the furnace can increases the axial temperature gradient and the ingot solidify time will be reduce, it can also reduce concentration of carbon. Combine these several designs and add the insulation block to make the furnace can get these several advantages and decrease the heater power consumer. The ingot quality can be increase.
Compare G6 and G8 model, we can find G8 furnace interface shape is more flat,
concentration of Oxygen and carbon are little difference. It means G8 furnace will be a better superiority in the future.
Add the insulation block in the G8 furnace can increases the axial temperature gradient. The interface shape become little convex, it is favorable crystal growth.
Further can reduce the power consumer of the heater, achieve the energy saving effect.
關鍵字(中) ★ 直接固化法
★ 多晶矽晶錠
★ G8爐體
★ 暫態數值模擬
關鍵字(英) ★ Direction Solidification method
★ Multi-crystalline silicon ingot
★ G8 furnace
★ transient numerical simulation
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章、緒論 1
1-1研究背景與與文獻回顧 1
1-2定向固化法生長多晶矽晶錠之熱流場與雜質之研究 3
1-3大尺寸多晶矽晶錠之研究 4
1-4研究動機與目的 5
第二章、研究方法 8
2-1物理系統 8
2-2基本假設條件 8
2-3統御方程式 9
2-4紊流計算 9
2-5熱場邊界條件 10
2-6流場邊界條件 11
2-7雜質邊界條件 12
2-8數值方法與網格測試 14
第三章、結果與討論 24
3-1標準型DSS G6爐體模擬分析 24
3-1-1石墨支撐層加入絕緣塊設計 26
3-1-2導流板設計 27
3-1-3支柱設計 28
3-1-4綜合設計 28
3-2標準型DSS G8與G6爐體模擬比較分析 29
3-3修改型DSS G8爐體分析 30
第四章、結論與未來研究方向 66
4-1結論 66
4-2未來研究方向 67
參考文獻 68
參考文獻 [1] Fraunhofer ISE , PHOTOVOLTAICS REPORT
[2] L. L. Kazmerski, "Solar photovoltaics R&D at the tipping point: A 2005 technology overview",Journal of Electron Spectroscopy and Related Phenomena,
Vol. 150, pp. 105-135, 2006
[3]鄧應揚,"太陽能多晶矽晶錠固化生長之熱流場與雜質輸送研究",國立中央大學,博士論文,2011
[4] A. A. Istratov, T. Buonassisi, M. D. Pickett, M. Heuer, and E. R. Weber,
"Control of metal impurities in “dirty” multicrystalline silicon for solar cells," Materials Science and Engineering: B, vol. 134, pp. 282-286,2006.
[5] T. Saitoh, X. Wang, H. Hashigami, T. Abe, T. Igarashi, S. Glunz, et al.,
"Suppression of light degradation of carrier lifetimes in low-resistivity CZ–Si solar cells," Solar Energy Materials and Solar Cells, vol. 65, pp.277-285, 2001.
[6] Lijun Liu, Satoshi Nakano and Koichi Kakimoto,"Carbon concentration and particle precipitation during directional solidification of multi-crystalline silicon for solar cells", Journal of Crystal Growth, Vol. 310, pp. 2192-2197,2008
[7] G.Du, L.Zhou, P.Rossetto and Y.Wan, "Hard inclusions and their detrimental effects on the wire sawing process of multicrystalline silicon", Solar Energy Materials & Solar Cells, Vol. 91, pp. 1743–1748, 2007
[8] Xiaofang Qi , QinghuaYu , WenhanZhao , XueqinLiang , JunZhang and LijunLiu, "Improved seeded directional solidification process for producing high-efficiency multi-crystalline silicon ingots for solar cells", Solar Energy Materials & Solar Cells, Vol. 130, pp. 118–123, 2014
[9]Changlin Ding, Meiling Huang , Genxiang Zhong , Liang Ming and XinmingHuang, "A design of crucible susceptor for the seed spreservation during a seeded directional solidification process", Journal of Crystal Growth, Vol. 387, pp. 73–80, 2014
[10] Liguo Chen and BingDai, "Optimization of power consumption on silicon directional solidification system by using numerical simulations", Journal of Crystal Growth, Vol. 354, pp. 86–92, 2012
[11] Qinghua Yu, LijunLiu , WenchengMa, GenxiangZhong and XinmingHuang , "Local design of the hot-zone in an industrial seeded directional solidification furnace for quasi-single crystalline silicon ingots", Journal of Crystal Growth, Vol. 358, pp. 5–11, 2012
[12] ZaoyangLi, LijunLiu, XinLiu, YunfengZhang and JingfengXiong, "Heat transfer in an industrial directional solidification furnace with multi-heaters for silicon ingots", Journal of Crystal Growth, Vol. 385, pp. 9-15, 2014
[13] Ying-Yang Teng, Jyh-ChenChen , Chung-WeiLu , Hsueh-IChen , ChuckHsu and Chi-YungChen, "Effects of the furnace pressure on oxygen and silicon oxide distributions during the growth of multicrystalline silicon ingots by the directional solidification process", Journal of Crystal Growth, Vol. 318, pp. 224–229, 2011
[14] B. Gao , S. Nakano and K. Kakimoto, "Effect of crucible cover material on impurities of multicrystalline silicon in a unidirectional solidification furnace", Journal of Crystal Growth, Vol. 318, pp. 255–258, 2011
[15] Ying-Yang Teng, Jyh-Chen Chen,Bo-Siang Huang and Ching-Hsin Chang, "Numerical simulation of impurity transport under the effect of a gas flow guidance device during the growth of multicrystalline silicon ingots by the directional solidification process", Journal of Crystal Growth, Vol. 385, pp. 1–8, 2014
[16] Kjerstin Ellingsen, Dag Lindholm and Mohammed M′Hamdi, "The effect of heating power on impurity formation and transport during the holding phase in a Bridgman furnace for directional solidification of multi-crystalline silicon", Journal of Crystal Growth, Vol. 444, pp. 39–45, 2016
[17]廖思涵,"使用晶種直接固化法生長大尺寸太陽能多晶矽之熱流場與雜質傳輸數值分析",國立中央大學,碩士論文,2015
[18]韓華新能源科技有限公司,唐青崗,魏國,吳金友"對下一代G8多晶鑄錠爐的幾點討論",SOLARZOOM光伏雜誌五月刊,page29-33,2014
[19] A. Raufeisen, M. Breuer, T. Botsch, and A. Delgado, "DNS of rotating buoyancy– and surface tension–driven flow," International Journal of Heat and Mass Transfer, vol. 51, pp. 6219-6234, 2008
[20] M. Wolfshtein, "The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient," International Journal of Heat and Mass Transfer, vol. 12, pp. 301-318, 1969
[21] A. D. Smirnov and V. V. Kalaev, "Analysis of impurity transport and deposition processes on the furnace elements during Cz silicon growth," Journal of Crystal Growth, vol. 311, pp. 829-832, 2009
[22] A. D. Smirnov and V. V. Kalaev, "Development of oxygen transport model in Czochralski growth of silicon crystals," Journal of Crystal Growth, vol. 310, pp. 2970-2976, 2008
[23] G. A. S. R.I. Scace, "Solubility of Carbon in silicon and Germanium," Journal of Chemical Physics, vol. 30, pp. 1551-1555, 1959
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2016-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明