博碩士論文 102323106 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.135.212.183
姓名 王克文(Ke-Wun Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波影像輔助HIFU系統之聚焦點位置校準
相關論文
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 整合可調式阻力之手足復健機研究
★ 應用於肝腫瘤治療之超音波影像輔助機械臂HIFU燒灼實驗系統★ 顱顏整型手術用植入物之設計與製作
★ 電腦輔助骨科手術用規劃及導引系統★ 遠端遙控機械手臂腹腔鏡手術系統
★ 頭部CT與MR影像之融合★ 手術用影像導引機械人定位及鑽孔系統
★ 機器人校正與醫學影像導引定位應用★ 顱顏手術用規劃及導引系統
★ 醫學用超音波影像導引系統★ 應用3D區域成長法於腦部磁共振影像之分割
★ 腦部手術用導引系統之方位校準及腦瘤影像分割★ 超音波影像即時震波導引
★ 腫瘤偵測與顱顏骨骼重建★ 骨科手術用C-arm影像輔助規劃及導引系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 高強度聚焦超音波(High Intensity Focused Ultrasound, HIFU)為熱治療手術方式之一,相較於傳統手術,其有無輻射、出血量少與非侵入性等優點,目前在前列腺、乳癌、肝臟等腫瘤治療上都有其應用,且對於血腦障壁的開啟及微氣泡藥物釋放等都有功效。HIFU燒灼治療主要的作用機制是以機械效應和熱效應在生物體內產生高溫,使目標處的細胞產生凝固性的壞死,然而HIFU換能器的聚焦點會因元件設計或製造的不夠精準或導引系統的定位誤差而有所偏移,導致在使用時會無法準確聚焦在選定的位置上。本研究藉由機械手臂控制HIFU換能器分別沿三個相互垂直的路徑來回移動並進行燒灼,同時以熱電偶量測燒灼溫度,由所得的兩條溫度-位置曲線的交點找視為HIFU換能器真正的聚焦點位置,並將此校正後的聚焦點位置應用在超音波影像導引HIFU燒灼定位系統。實驗以NIPAM-52水膠做為校正用的仿體,取其可逆的特性使同路徑的來回燒灼條件一致。實驗結果顯示由定位探針點選的熱電偶位置與以機械手臂移動HIFU換能器的燒灼聚焦點位置距離誤差在1 mm 以下。同樣方式的實驗也應用在豬里肌肉的燒灼,結果顯示在2秒內燒灼區可升溫至攝氏80度,達到使細胞壞死的功效。
摘要(英) HIFU(High-Intensity Focused Ultrasound) treatment is a kind of thermal treatment procedures. Comparing to conventional surgical treatment, HIFU treatment has lots of advantages such as radiation-free, less bleeding and noninvasiveness. Currently, HIFU has been applied in tumor treatments such as prostate, breast, and liver tumors. It is also used in the disruption of the blood-brain barrier and microbubble drug delivery. The main mechanisms of HIFU ablation treatment involve mechanical and thermal effect, which can generate high temperature to heat and destroy target cells. However, its position of focal point may not be accurate during ablation positioning because the design or manufacturing of system components are not accurate enough and inaccurate positioning of the robotic HIFU positioning system. In this study, we find the real focal point of a HIFU transducer by moving the HIFU transducer controlled by a robot manipulator to ablate an phantom along three orthogonal paths back and forth. A thermal couple is used to detect ablation temperature at the same time. Then the intersection of the two temperature-position curves obtained during the back and forth movement along the same path is defined as the focus point position of the HIFU transducer, which is used to position the HIFU transducer for an ultrasound assisted robotic positioning system. In the experiment, NIPAM-based hydrogel phantoms are used because of its reusable property of quick recovery from HIFU ablation. The experimental results shown that the distance between the target tip point position of a thermal couple measured by a positioning detector and the ablation focus point of a HIFU transducer controlled by a ultrasound assisted robotic positioning system is less than 1 mm. Similar experimental procedures are applied to ablate pig loin tissue. The temperature of ablation area raises to 80 degrees Celsius in two minutes, which is high enough to destroy tissue cells.
關鍵字(中) ★ 高強度聚焦超音波
★ 超音波導引
★ 機械手臂
★ 聚焦點
關鍵字(英) ★ High intensity focused ultrasound
★ Ultrasound guided
★ Robot
★ Focus point
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 聚焦點定位 2
1-2-2 溫度量測 3
1-2-3 實驗仿體 4
1-2-4 文獻總結 5
第2章 系統架構 6
2-1 硬體架構 6
2-1-1 硬體介紹 7
2-2 軟體平台 9
第3章 研究方法 10
3-1 座標系定義與系統註冊 10
3-1-1 座標系統註冊 11
3-1-2 系統註冊 13
3-2 溫度量測 14
3-3 HIFU 聚焦點定位 17
3-3-1 HIFU聚焦區域三軸定位 17
3-4 超音波影像下熱電偶尖點 24
第4章 實驗結果與討論 27
4-1 實驗仿體 27
4-2 聚焦點定位實驗 28
4-2-1 不同瓦數下聚焦點位移實驗 28
4-2-2 探針製作及驗證 29
4-2-3 HIFU聚焦點位置三軸定位實驗 30
4-3 超音波影像下熱電偶位置補償實驗 37
4-4 目標深度對HIFU聚焦區域大小的影響 40
4-5 豬肉組織燒灼定位準確度實驗 41
4-5-1 里肌豬肉 41
4-5-2 豬肝實驗 45
第5章 結論與未來展望 49
參考文獻 50
參考文獻 [1]. S. Li, and P. Wu, “Magnetic resonance image-guided versus ultrasound-guided high-intensity focused ultrasound in the treatment of breast cancer,” Chin J Cancer, vol. 32, pp. 441-452, 2013.
[2]. G. Malietzis, L. Monzon, J. Hand, et al., “High-intensity focused ultrasound: advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology”, The British Journal of Radiology, vol. 86, no. 1024, pp. 20130044, 2013.
[3]. D. Mari, S. Giuliano, E. Lanteri, et al., “Clinical use of high-intensity focused ultrasound in the management of different solid tumors”, World Cancer Research Journal, vol. 1, no. 3, pp. 295, 2014.
[4]. T. Uchida, T. Tomonaga, H. Kim, et al., “Improved outcomes with advancements in high-intensity focused ultrasound devices for the treatment of localized prostate cancer”, Journal of Urology, vol. 193, no. 1, pp. 103-110, 2015.
[5]. O. Al-Bataineh, J. Jenne, P. Huber, “Clinical and future applications of high intensity focused ultrasound in cancer”, Cancer Treatment Reviews, vol. 38, no. 5, pp. 346-353, 2012.
[6]. Z. Qiu, J. Gao, S. Cochran, et al., “The development of therapeutic ultrasound with assistance of robotic manipulator”, Conf Proc IEEE Eng Med Biol Soc, vol. 2009, pp. 733-736, 2009.
[7]. J. Seo, N. Koizumi, K. Yoshinaka, et al., “Three-dimensional computer-controlled acoustic pressure scanning and quantification of focused ultrasound”, IEEE Trans Ultrasonics Ferroelectrics Frequency Control, vol. 57, pp. 883-891, 2010.
[8]. R. Martinez, A. Vera, L. Leija, “High-intensity focused ultrasound thermal mapping by using a thermocouple embedded in a tissue-mimicking material”, Electrical Engineering, Computing Science and Automatic Control (CCE), 2012 9th International Conference on, pp. 1-4, 2012.
[9]. S. Dasqupta, R. Banerjee, P. Hariharan, “Beam localization in HIFU temperature measurements using thermocouples with application to cooling by large blood vessels”, Ultrasonic, vol. 51, no. 2, pp. 171-180, 2011.
[10]. L. Hallez, F. Touyeras, J. Hihn, et al., “Characterization of HIFU transducers designed for sonochemistry application: acoustic streaming”, Ultrasonics Sonochemistry, vol. 29, pp. 420–427, 2016.
[11]. Y. Zhou, “High intensity focused ultrasound in clinical tumor ablation”, World J Clin Oncol, vol. 2, no. 1, pp, 8-27, 2011.
[12]. M. Solovchuk, S. Hwang, H. Chang, “Temperature elevation by HIFU in ex vivo porcine muscle: MRI measurement and simulation study”, American Association of Physicists in Medicine, Medical Physics, vol. 41, no. 5, 2014.
[13]. S. Sethuraman, S. Aglyamov, R. Smalling, et al., “Remote temperature estimation in intravascular photoacoustic imaging”, Ultrasound Med Biol, vol. 34, no. 2, pp. 299–308, 2008
[14]. K. Lin, S. Young, M. Hsu, et al., “Focused ultrasound thermal therapy system with ultrasound image guidance and temperature measurement feedback”, 30th Annual International IEEE EMBS Conference, Vancouver ,BC, pp. 2522-2525, 2008.
[15]. R. King, Y. Liu, and S. Maruvada, “Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound”, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 58, no. 7, pp. 1397-1405, 2011.
[16]. M. Choi, S. Guntur, K. Lee, et al., “A tissue mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions generated by high intensity focused ultrasound”, Ultrasound in Med and Biol, vol. 3, no. 3, pp. 439-448, 2013.
[17]. A. Troia, R. Cuccaro, and A. Schiavi, “Novel preparations for homogeneous tissue mimicking materials in HIFU dosimetry study”, The 22nd International Congress on Sound and Vibration, 2015.
[18]. Y. Tung, H. Liu, C. Wu, et al., “Contrast-agent-enhanced ultrasound thermal ablation”, Ultrasound in Medicine and Biology, vol. 32, pp.1103-1110, 2006.
[19]. K. Takegami, Y. Kaneko, T. Watanabe, et al., “Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound”, Ultrasound in Medicine and Biology, vol. 30, pp. 1419-1422, 2004.
[20]. M. Sun, J. Shieh, C. Lo, et al., “Reusable tissue-mimicking hydrogel phantoms for focused ultrasound ablation”, Ultrasonics Sonochemistry, vol. 23, pp. 399–405, 2015.
[21]. 徐永倫,「應用於HIFU之超音波影像輔助機械手臂追蹤呼吸腫瘤系統」,碩士論文,中央大學生物醫學工程研究所,2015。
[22]. 廖英吟,「超音波影像定位」, 碩士論文,中央大學生醫工程研究所,2011。
[23]. 顏子茜,「以達治療溫度為基礎的高強度聚焦超聲波燒灼路徑規劃」,碩士論文,中央大學生物醫學工程研究所,2014。
指導教授 曾清秀(Ching-Shiow Tseng) 審核日期 2016-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明