參考文獻 |
[1] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report”, Fuel Cell Today, 2011.
[2] K. Kordesch, G. Simader, “Fuel Cells and Their Applications,” VCH Weinheim, 1996.
[3] J. J. Sumner, S. E. Creager,t J. J. Ma and D. D. DesMarteau, “Proton conductivity in Nafion® 117 and in a novel bis[(perfluoroalkyl)sulf onyl]imide ionomer membrane”, J. Electrochem. Soc., Vol. 145, No. 1, 1998.
[4] Y. L. Ma, J. S. Wainright, M. H. Litt, and R. F. Savinell, “Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells”, J. Electrochem. Soc, Vol. 151, pp. A8-A16, 2004.
[5] J. A. Asensio, S. Borrós, P. Gómez-Romero, “Proton-conducting membranes based on poly(2,5-benzimidazole)(ABPBI) and phosphoric acid prepared by direct acid casting”, Journal of Membrane Science, Vol. 241, pp. 89-93, 2004.
[6] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhanga, D. Song, Z. S. Liu, H. Wang and J. Shen, “A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation”, J. Power Sources, Vol. 165, pp. 739-756, 2007.
[7] 黃鎮江,燃料電池,全華科技圖書股份有限公司,2005.
[8] P. Moçotéguy, B. Ludwig, J. Scholta, R. Barrera and S. Ginocchio, “Long term testing in continuous mode of HT-PEMFC based H3PO4/PBI Celtec-P MEAs for μ-CHP Applications”, Fuel Cell, Vol. 9, pp. 325-348, 2008.
[9] S. J. Andreasen, J. R. Vang and S. K. Kær, “High temperature PEM fuel cell performance characterization with CO and CO2 using electrochemical impedance spectroscopy”, Int. J. Hydrogen Energy, Vol. 36, pp. 9815-9830, 2011.
[10] K. Wippermann, C. Wannek, H. F. Oetjen, J. Mergel and W. Lehnert, “Cell resistances of poly(2,5-benzimidazole)-based high temperature polymer membrane fuel cell membrane electrode assemblies: Time dependence and influence of operating parameters”, J. Power Sources, Vol. 195, pp. 2806-2809, 2010.
[11] C. J Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang and S. Kun. Lo, “A PEM fuel cell with metal foam as flow distributor”, Energy Conversion and Management, Vol. 62, pp. 14-21, 2012.
[12] B. T. Tsai, C. J. Tseng, Z. S. Liu, C. H. Wang, C. I. Lee, C. C. Yang and Shih-Kun Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor ”, Int. J. Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[13] O. J. Murphy, A. Cisar, and Clarke, “Low-cost light weight high power density PEM fuel cell stack”, Electrochimica Acta, Vol. 43, pp. 3829-3840, 1998.
[14] M. A. Dawson, J. T. Germaine and L. J. Gibson, “Permeability of open-cell foams under compressive strain”, International Journal of Solids and Structures, Vol. 44, pp. 5133–5145, 2007.
[15] A. Kumar, R. G. Reddy, “Modeling of polymer membrane fuel cell with metal foam in the floe-field of the bipolar/end plates”, J. Power Sources, Vol. 114, pp. 54-62, 2003.
[16] J. Kim, N. Cunningham, “Development of porous carbon foam polymer electrolyte membrane fuel cell”, J. Power Sources, Vol. 195, pp. 2291-2300, 2010.
[17] B. P. Muljadi, M. J. Blunt, A. Q.Raeini and B. Bijeljic, “The impact of porous media heterogeneity on non-Darcy flow behavior from pore-scale simulation”, Advances in Water Resources, Vol. 0, pp. 1-12, 2015.
[18] J. Zhang, Y. Tang, C. Song and J. Zhang, “Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200 oC”, J. Power Sources, Vol. 172, pp. 163–171, 2007.
[19] S. Galbiati, A. Baricci, A. Casalegno, G. Carcassola and R. Marchesi, “On the activation of polybenzimidazole-based membrane electrode assemblies doped with phosphoric acid”, Int. J. Hydrogen Energy, Vol. 37, pp. I4475-I4481, 2012.
[20] B. Xing, O. Savadogo, “The effect of acid doping on the conductivity of polybenzimidazole(PBI)”, J. New Mater. Electrochem. Syst., Vol. 2, pp. 95-101, 1999.
[21] M. G. Waller, M. R. Walluk and T. A. Trabold, “Performance of high temperature PEM fuel cell materials. Part 1: Effects of temperature, pressure and anode dilution”, Int. J. Hydrogen Energy, Vol. 41, pp. 2944-2954, 2016.
[22] E. U. Ubong, Z. Shi and X. Wang, “Three-dimensional modeling and experimental study of a high temperature PBI-based PEM fuel cell”, J. Electrochem. Soc., Vol. 156, pp. B1276-B1282, 2009.
[23] F. Liu, M. Kvesi´c, K. Wippermann, Uwe Reimer and Werner Lehnerta, “Effect of spiral flow field design on performance and durability of HT-PEFCs”, J. Electrochem. Soc., Vol. 160, pp. F892-F897, 2013.
[24] J. Lobato, P. Cañizares, M. A. Rodrigo, F. J. Pinar and D. Úbeda, “Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell”, J. Power Sources, Vol. 196, pp. 4209-4217, 2011.
[25] S. H. Eberhardt, M. Toulec, F. Marone, M. Stampanoni, F. N. Büchi and T. J. Schmidta, “Dynamic operation of HT-PEFC: In-operando imaging of phosphoric acid profiles and (re)distribution”, J. Electrochem. Soc., Vol. 162, pp. F310-F316, 2015.
[26] S. H. Eberhardt, T. Lochner, F. N. Büchi and T. J. Schmidta, “Correlating electrolyte inventory and lifetime of HT-PEFC by accelerated stress testing”, J. Electrochem. Soc., Vol. 162, pp. F1367-F1372, 2015.
[27] J. L. Jespersen, E. Schaltzb and S. K. Kærb, “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell”, J. Power Sources, Vol. 191, pp. 289-296, 2009.
[28] C. Beer, P. S. Barendse, P. Pillay, B. Bullecks and R. Rengaswamy, “Classification of high-temperature PEM fuel cell degradation mechanisms using equivalent circuits”, IEEE Transactions on Industrial Electronics, Vol. 62, pp. 5265-5274, 2015.
[29] M. Mamlouk, K. Scott, “Analysis of high temperature polymer electrolyte membrane fuel cell electrodes using electrochemical impedance spectroscopy”, Electrochimica Acta, Vol. 56, pp. 5493–5512, 2011.
[30] M. S. Kondratenko, M. O. Gallyamov and A. R. Khokhlov, “Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy”, Int. J. Hydrogen Energy, Vol. 37, pp. 2596-2602, 2012.
[31] N. H. Jalani, M. Ramanib, K. Ohlsson, S. Buelte, G. Pacifico, R. Pollard, R Staudt and R. Datta, “Performance analysis and impedance spectral signatures of high temperature PBI–phosphoric acid gel membrane fuel cells”, J. Power Sources, Vol. 160, pp. 1096-1103, 2006.
[32] R. O’Hayre, W. S. Cha, W. Colella, F.B. Prinz, “Fuel cell fundamentals”, Wiley, 2005.
[33] 蔡秉蒼,「應用金屬發泡材為流道之質子交換膜燃料電池之研究」,國立中央大學能源工程研究所博士論文,2012. |