博碩士論文 103323061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.137.216.109
姓名 邱奕翔(Yi-Hsiang Chiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 循環式鋰離子電池溫控模組之模擬分析
(Analysis of circulating lithium-ion battery temperature control module)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究建立一循環式鋰離子電池溫控模組之模型。透過商用軟體COMSOL Multiphysics,根據理論計算出鋰離子電池放電時所產生之熱源,並取其平均值應用於電池模組中進行模擬分析。文中分析模組不同的環境溫度、前導流設計、發泡材參數、內風扇速度以及使用鋁發泡材取代導流版與加熱器鰭片時,模組所需之加熱時間、電池溫度及流場均勻性。
結果顯示,當進入電池前之流場均勻性越好,模組需要的加溫時間越短;前導流區域有四片導流板時,進入電池之流場均勻性較好,電池所需之加溫時間較短;鋁發泡材之孔隙率和滲透率分別在0.8和1×10-7 m2時,有較好的熱傳能力;內風扇速度在2 m/s時,雖然所需之加熱時間短,但會增加表面熱通量之損失,使得加熱器需不斷的啟動以維持溫度,且風扇也需較大的功率來驅動流體;使用鋁發泡材取代導流板與加熱器鰭片時,以圓弧形導流之斜角式凸出發泡材模組在進入電池前之流場均勻性最好,電池所需之加溫時間最短。此模組亦可在高溫或低溫等極端環境下使用,且皆符合電池安全之工作溫度範圍內。



關鍵字:鋰離子電池模組,熱管理,溫控,循環。
摘要(英) Several designs of thermal control module for circulating lithium-ion battery are proposed and analyzed in this study. Commercial software COMSOL Multiphysics is used. In this research, the heating time, ambience temperature, different diversion design in front of the module, different parameter of metal foam, internal fan velocity and use the metal foam to substitute the deflector and the fin of heater is investigated.
Results show that, due to the flow field into the battery is more uniform, the module which is consist of four deflectors have the less heating time. When the porosity and permeability of metal foam is 0.8 and 1E-7 m2 have the better heat transfer effect, respectively. Although the velocity of internal fan is 2 m/s which have less heating time, more heat loss from surface heat flux and make the heater have to work to maintain the module temperature. The best design is arc shape combine bevel angle metal foam module which have the best uniform flow field and least heating when we use the metal foam to substitute the deflector and the fin of heater. This module also can work at high and low temperature in safe operating limit.
Keywords: Lithium ion battery module, Thermal management, Temperature control, Circulating
關鍵字(中) ★ 鋰離子電池模組
★ 熱管理
★ 溫控
★ 循環
關鍵字(英) ★ Lithium ion battery module
★ Thermal management
★ Temperature control
★ Circulating
論文目次 摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 XV
符號表 XVII
第一章 緒論 1
1-1 前言 1
1-2 鋰離子電池 2
1-2-1 鋰離子電池特點 2
1-2-2鋰離子電池基本原理 4
1-3文獻回顧 4
1-3-1 鋰離子電池模型研究 5
1-3-2 電池模組散熱 9
1.4研究動機與方向 13
第二章 理論分析 16
2-1模型幾何外型 16
2-2基本假設 17
2-3 統御方程式 17
2-4 電池熱化學反應 18
2-5變異係數 22
2-6邊界條件與初始條件 23
第三章 數值方法與驗證 34
3-1 有限元素法 34
3-2 計算方法 38
3-3 驗證電池溫度 38
3-4 紐賽數(NUSSELT NUMBER)驗證 39
3-5網格獨立測試 40
第四章 結果與討論 47
4-1在流道中填充金屬發泡材對電池模組之影響 47
4-2不同環境溫度下對電池模組之影響 49
4-2-1 當環境溫度為-5 OC(北京、韓國)時對電池模組之影響 49
4-2-2 當環境溫度為5 OC(日本)時對電池模組之影響 51
4-2-3當環境溫度為10 OC (台灣)時對電池模組之影響 52
4-2-4當環境溫度為25 OC(台灣春天)時對電池模組之影響 53
4-2-4當環境溫度為30 OC(台灣夏天)時對電池模組之影響 54
4-3不同前導流設計對電池模組與電池溫度之影響 54
4-3-1不同前導流區域導流版數量對模組之影響 55
4-3-2不同前導流區域厚度對模組之影響 57
4-4不同鋁發泡材參數與內風扇速度對電池模組之影響 59
4-4-1 不同鋁發泡材之孔隙率對模組之影響 59
4-4-2 不同鋁發泡材之滲透率對模組之影響 61
4-4-3 不同內風扇速度對模組之影響 62
4-5 使用鋁發泡材取代加熱器鰭片與導流版對模組之影響 63
4-5-1 不同發泡材與導流外殼形狀對模組之影響 64
4-5-2 不同極端環境下對電池模組之影響 66
4-5-2-1 高溫環境時對電池模組之影響 66
4-5-2-2 低溫環境時對電池模組之影響 67
第五章 結論與未來建議 133
5-1 結論 133
5-2 未來建議 135
第六章 參考文獻 136
參考文獻 [1] 黃可龍、王兆翔和劉素琴,「鋰離子電池原理與技術」,五南,初版,2010
[2] M. Doyle, T. F. Fuller, and J. Newman, “Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell” Electrochemical Society, Vol. 140, No. 6, 1993.
[3] T. F. Fuller, M. Doyle, and J. Newman, “Simulation and Optimization of the Dual Lithium Ion Insertion Cell,” Electrochemical Society, Vol. 141, No. 1, 1994.
[4] M. Doyle, and J. Newman, “Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells,” Electrochemical Society, Vol. 143, No. 6, 1996.
[5] R. Darling, and J. Newman, “Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes,” Electrochemical Society, Vol. 144, No. 12, 1997.
[6] R. Darling, and J. Newman, “Modeling Side Reactions in Composite LiMn2O4 Electrodes,” Electrochemical Society, Vol. 145, No. 3, 1998.
[7] P. Ramadass, B. Haran, R. White, and B. N. Popov, “Mathematical modeling of the capacity fade of Li-ion cells,” Power Sources, Vol. 123, pp. 230-240, 2003.
[8] S. Kawano, and F. Nishimura, “Numerical Analysis of Discharge Characteristics in Lithium Ion Batteries Using Multiphase Fluids Model,” Applied Physics, Vol. 44, pp. 4218-4228, 2005.
[9] D. Danilov, and P. H. L. Notten, “Mathematical modelling of ionic transport in the electrolyte of Li-ion batteries,” Electrochimica Acta, Vol. 53(17), pp. 5569-5578, 2008.
[10] V. R. Subramanian, V. Boovaragavan, V. Ramadesigan, and M. Arabandi, “Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions,” Electrochemical Society, Vol. 156, pp. 260-271, 2009.
[11] S. Golmon, K. Maute, and M. L. Dunn, “Numerical modeling of electrochemical–mechanical interactions in lithium polymer batteries,” Computers & Structures, Vol. 87, pp. 1567-1579, 2013
[12] E. Martínez-Rosas, R. Vasquez-Medrano, and A. Flores-Tlacuahuac, “Modeling and simulation of lithium-ion batteries,” Computers & Chemical Engineering, Vol. 35, pp. 1937-1948, 2011.
[13] D. Bernardi, E. Pawlikowski, and J. Newman, “A General Energy Balance for Battery Systems,” Electrochemical Society, Vol. 132, No. 1, 1985.
[14] K. E. Thomas, C. Bogatu, and J. Newman, “Measurement of the Entropy of Reaction as a Function of State of Charge in Doped and Undoped Lithium Manganese Oxide,” Electrochemical Society, Vol. 148, pp. 570-575, 2001.
[15] C. Y. Wang, and V. Srinivasan, “Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling,” Power Sources, Vol. 110, pp. 367-376, 2002.
[16] P. M. Gomadam, R. E. White, and J. W. Weidner, “Modeling Heat Conduction in Spiral Geometries,” Electrochemical Society, Vol. 150, pp. 1339-1345, 2003.
[17] S. C. Chen, Y. Y. Wang, and C. C. Wan, “Thermal Analysis of Spirally Wound Lithium Batteries,” Electrochemical Society, Vol. 153(4), pp. A637-A648, 2006.
[18] X. Zhang, “Thermal analysis of a cylindrical lithium-ion battery,” Electrochimica Acta, Vol. 56, pp. 1246-1255, 2011.
[19] D. H. Jeon, and S. M. Baek, “Thermal modeling of cylindrical lithium ion battery during discharge cycle,” Energy Conversion and Management, Vol. 52, pp. 2973-2981, 2011.
[20] K. Somasundaram, E. Birgersson, and A. S. Mujumdar, “Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery,” Power Sources, Vol. 203, pp. 84-96, 2012.
[21] L. Fan, J. M. Khodadadi, and A. A. Pesaran, “A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles,” Power Sources, Vol. 238, pp. 301-312, 2013.
[22] X. Li, F. He, and L. Ma, “Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation,” Power Sources, Vol. 238, pp. 395-402, 2013.
[23] F. He, X. Li, and L. Ma, “Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells,” Heat and Mass Transfer, Vol. 72, pp. 622-629, 2014.
[24] H. Sun, and R. Dixon, “Development of cooling strategy for an air cooled lithium-ion battery pack,” Power Sources, Vol. 272, pp. 404-414, 2014.
[25] N. Nieto, L. Diaz, J. Gastelurrutia, F. Blanco, J. C. Ramos, and A. Rivas, “Novel thermal management system design methodology for power lithium-ion battery,” Power Sources, Vol. 272, pp. 291-302, 2014.
[26] R. Liu, J. Chen, J. Xun, K. Jiao, and Q. Du, “Numerical investigation of thermal behaviors in lithium-ion battery stack discharge,” Applied Energy, Vol. 132, pp. 288-297, 2014.
[27] K. Yu, X. Yang, Y. Cheng, and C. Li, “Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack,” Power Sources, Vol. 270, pp. 193-200, 2014.
[28] Z. Ling, F. Wang, X. Fang, X. Gao, and Z. Zhang, “A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling,” Applied Energy, Vol. 148, pp. 403-409, 2015.
[29] T. Wang, K. J. Tseng, and J. Zhao, “Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model,” Applied Thermal Engineering, Vol. 90, pp. 521-529, 2015.
[30] T. Wang, K. J. Tseng, and Z. Wei, “Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies,” Applied Energy, Vol.134, pp. 229-238, 2014.
[31] Y. Ye, L. H. Saw, Y. Sho, and A. A. O. Tay, “Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging,” Applied Thermal Engineering, Vol. 86, pp. 281-291, 2015.
[32] S. K. Mohammadian, and Y. Zhang, “Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles,” Power Sources, Vol, 273, pp. 431-439, 2015.
[33] S. K. Mohammadian, S. M. Rassoulinejad-Mousavi, and Y. Zhang, “Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam,” Power Sources, Vol. 296, pp. 305-313, 2015.
[34] A.Zukauskas, and R. Ulinskas, Heat transfer in Tube Bank in Crossflow, frist ed, Hemisphere Publishing, New York, 1988.
[35] Z. Zeng, and R. Grigg, “A Criterion for Non-Darcy Flow in Porous media,” Transport in Porous Media, Vol. 63, pp. 57-69, 2006.
[36] G. P. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978
[37] C. Hirsch, Numerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization, Volume 1, 1989.
[38] Y. Saad, and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” Society for Industrial and Applied Mathematics, Vol. 7, No. 3, 1986.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明