參考文獻 |
[1] 黃可龍、王兆翔和劉素琴,「鋰離子電池原理與技術」,五南,初版,2010
[2] M. Doyle, T. F. Fuller, and J. Newman, “Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell” Electrochemical Society, Vol. 140, No. 6, 1993.
[3] T. F. Fuller, M. Doyle, and J. Newman, “Simulation and Optimization of the Dual Lithium Ion Insertion Cell,” Electrochemical Society, Vol. 141, No. 1, 1994.
[4] M. Doyle, and J. Newman, “Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells,” Electrochemical Society, Vol. 143, No. 6, 1996.
[5] R. Darling, and J. Newman, “Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes,” Electrochemical Society, Vol. 144, No. 12, 1997.
[6] R. Darling, and J. Newman, “Modeling Side Reactions in Composite LiMn2O4 Electrodes,” Electrochemical Society, Vol. 145, No. 3, 1998.
[7] P. Ramadass, B. Haran, R. White, and B. N. Popov, “Mathematical modeling of the capacity fade of Li-ion cells,” Power Sources, Vol. 123, pp. 230-240, 2003.
[8] S. Kawano, and F. Nishimura, “Numerical Analysis of Discharge Characteristics in Lithium Ion Batteries Using Multiphase Fluids Model,” Applied Physics, Vol. 44, pp. 4218-4228, 2005.
[9] D. Danilov, and P. H. L. Notten, “Mathematical modelling of ionic transport in the electrolyte of Li-ion batteries,” Electrochimica Acta, Vol. 53(17), pp. 5569-5578, 2008.
[10] V. R. Subramanian, V. Boovaragavan, V. Ramadesigan, and M. Arabandi, “Mathematical Model Reformulation for Lithium-Ion Battery Simulations: Galvanostatic Boundary Conditions,” Electrochemical Society, Vol. 156, pp. 260-271, 2009.
[11] S. Golmon, K. Maute, and M. L. Dunn, “Numerical modeling of electrochemical–mechanical interactions in lithium polymer batteries,” Computers & Structures, Vol. 87, pp. 1567-1579, 2013
[12] E. Martínez-Rosas, R. Vasquez-Medrano, and A. Flores-Tlacuahuac, “Modeling and simulation of lithium-ion batteries,” Computers & Chemical Engineering, Vol. 35, pp. 1937-1948, 2011.
[13] D. Bernardi, E. Pawlikowski, and J. Newman, “A General Energy Balance for Battery Systems,” Electrochemical Society, Vol. 132, No. 1, 1985.
[14] K. E. Thomas, C. Bogatu, and J. Newman, “Measurement of the Entropy of Reaction as a Function of State of Charge in Doped and Undoped Lithium Manganese Oxide,” Electrochemical Society, Vol. 148, pp. 570-575, 2001.
[15] C. Y. Wang, and V. Srinivasan, “Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling,” Power Sources, Vol. 110, pp. 367-376, 2002.
[16] P. M. Gomadam, R. E. White, and J. W. Weidner, “Modeling Heat Conduction in Spiral Geometries,” Electrochemical Society, Vol. 150, pp. 1339-1345, 2003.
[17] S. C. Chen, Y. Y. Wang, and C. C. Wan, “Thermal Analysis of Spirally Wound Lithium Batteries,” Electrochemical Society, Vol. 153(4), pp. A637-A648, 2006.
[18] X. Zhang, “Thermal analysis of a cylindrical lithium-ion battery,” Electrochimica Acta, Vol. 56, pp. 1246-1255, 2011.
[19] D. H. Jeon, and S. M. Baek, “Thermal modeling of cylindrical lithium ion battery during discharge cycle,” Energy Conversion and Management, Vol. 52, pp. 2973-2981, 2011.
[20] K. Somasundaram, E. Birgersson, and A. S. Mujumdar, “Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery,” Power Sources, Vol. 203, pp. 84-96, 2012.
[21] L. Fan, J. M. Khodadadi, and A. A. Pesaran, “A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles,” Power Sources, Vol. 238, pp. 301-312, 2013.
[22] X. Li, F. He, and L. Ma, “Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation,” Power Sources, Vol. 238, pp. 395-402, 2013.
[23] F. He, X. Li, and L. Ma, “Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells,” Heat and Mass Transfer, Vol. 72, pp. 622-629, 2014.
[24] H. Sun, and R. Dixon, “Development of cooling strategy for an air cooled lithium-ion battery pack,” Power Sources, Vol. 272, pp. 404-414, 2014.
[25] N. Nieto, L. Diaz, J. Gastelurrutia, F. Blanco, J. C. Ramos, and A. Rivas, “Novel thermal management system design methodology for power lithium-ion battery,” Power Sources, Vol. 272, pp. 291-302, 2014.
[26] R. Liu, J. Chen, J. Xun, K. Jiao, and Q. Du, “Numerical investigation of thermal behaviors in lithium-ion battery stack discharge,” Applied Energy, Vol. 132, pp. 288-297, 2014.
[27] K. Yu, X. Yang, Y. Cheng, and C. Li, “Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack,” Power Sources, Vol. 270, pp. 193-200, 2014.
[28] Z. Ling, F. Wang, X. Fang, X. Gao, and Z. Zhang, “A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling,” Applied Energy, Vol. 148, pp. 403-409, 2015.
[29] T. Wang, K. J. Tseng, and J. Zhao, “Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model,” Applied Thermal Engineering, Vol. 90, pp. 521-529, 2015.
[30] T. Wang, K. J. Tseng, and Z. Wei, “Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies,” Applied Energy, Vol.134, pp. 229-238, 2014.
[31] Y. Ye, L. H. Saw, Y. Sho, and A. A. O. Tay, “Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging,” Applied Thermal Engineering, Vol. 86, pp. 281-291, 2015.
[32] S. K. Mohammadian, and Y. Zhang, “Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles,” Power Sources, Vol, 273, pp. 431-439, 2015.
[33] S. K. Mohammadian, S. M. Rassoulinejad-Mousavi, and Y. Zhang, “Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam,” Power Sources, Vol. 296, pp. 305-313, 2015.
[34] A.Zukauskas, and R. Ulinskas, Heat transfer in Tube Bank in Crossflow, frist ed, Hemisphere Publishing, New York, 1988.
[35] Z. Zeng, and R. Grigg, “A Criterion for Non-Darcy Flow in Porous media,” Transport in Porous Media, Vol. 63, pp. 57-69, 2006.
[36] G. P. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978
[37] C. Hirsch, Numerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization, Volume 1, 1989.
[38] Y. Saad, and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” Society for Industrial and Applied Mathematics, Vol. 7, No. 3, 1986. |