博碩士論文 102326019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.220.247.209
姓名 王詩芸(Shih-Yun Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢
(Reductive dissolution of mercury-bearing iron(III) (oxyhydr)oxides by dissimilatory iron-reducing bacteria and the potential to mobilize mercury in its elemental form)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 汞是毒性最強的元素之一,當地下水遭受汞污染時將導致此水資源無法被適
當利用。在許多案例中,污染場址並未發現到有明顯外來點源的存在,且水質監
測的結果常顯示(1)受污染的地下水含有較高濃度的有機碳,以及(2)水中的總汞、
甚至元素汞濃度的增加與溶解鐵濃度的增加具有正相關等特性。雖然幾種可能的
生地化機制已被提出用以解釋及推估污染事件背後的成因,但這些機制目前皆未
被證實,包括「當含水層處於以鐵還原為主要的最終電子接受的狀態時,汞化性
與移動性的轉變極有可能與系統中的異化性鐵還原菌之生長及代謝有關」這樣的
論點,其推論主要是基於過往的研究已證實鐵還原菌本身以及因這類微生物生長
代謝而衍生的二次礦物可將汞直接還原。然而,文獻上所得的這些汞還原作用其
實驗設計皆是針對水溶液中的汞進行探討,無法貼近於地下水污染案例中汞物種
真實的分布情況。有鑑於此,本研究藉由模擬的方式以可進行胞外呼吸作用的鐵
還原菌 Shewanella oneidensis MR-1 為模式生物,環境中最常見的三價鐵礦hematite (赤鐵礦)與 goethite (黃鐵礦)為模式礦物進行厭氧縮模試驗,待 Hg(II)與hematite 或 goethite 於試驗培養液中達吸附平衡後加入 MR-1,並隨時間分析系統中的溶解汞、元素汞與總亞鐵的含量變化,以觀測地下含水層中當異化性鐵還原菌受刺激生長後二次鐵礦的形成及汞的氧化還原轉換與移動潛勢。試驗與模擬的結果顯示,Hg(II)與 Fe(III)鐵礦可能因靜電吸引作用的關係而迅速地達到吸附平衡,且此平衡在添加 MR-1 菌株後並未受到劇烈破壞。此外,汞的還原程度雖然隨著 MR-1 對不同鐵礦的使用而有所差異,但不論是在含有 hematite 或 goethite的系統,元素汞的生成皆可對應細胞的生長代謝,且過程中所檢測到的溶解汞濃度的變化皆不甚明顯。這些結果支持原本的假說,即「地下飽和含水層中原吸附/鑲嵌於鐵礦的 Hg(II)在受到鐵還原菌生長代謝的影響下,將因生源性 Fe(II)的生成而易被還原成 Hg(0),使得整體 Hg 於地下水環境中的移動性提高,進而促成汞的污染擴散」。
摘要(英) The groundwater contamination with mercury (Hg) is an increasing problem worldwide, and since Hg is highly toxic, contamination may render this water resource unsuitable for intented use. In many cases, the external pollution sources are not well defined, and samples taken from monitoring wells are oftentimes characterized with (i) elevated levels of organic carbon and (ii) a positive correlation between concentrations of total Hg or elemental Hg and dissolved iron (Fe). On the basis of these
observations, possible mechanisms of the biogeochemical processes that underlie the contamination scenarios have been proposed, including the most acceptable one that
postulates “growth and associated metabolisms of indigenous iron-reducers may have been the primary cause for the alternation of Hg speciation and mobility in the aquifer”.
However, such hypothesis is completely derived from results of the studies that only investigated redox transformations of Hg in the aqueous phase of a heterogeneous
system, which may not be representative of the real situation encountered in the aquifer, as Hg is considered originating from saturated Hg-bearing sediment (i.e., the
solid phase). To validate this hypothesis, laboratory microcosm experiments were conducted to simulate processes of microbially-induced reductive dissolution of Fe(III)
minerals by equilibrating Hg(II) adsorption onto synthetic hematite and goethite (two of the most commonly found iron oxyhydroxides in the environment used as model minerals) prior to the addition and growth of the model bacterium, Shewanella oneidensis MR-1 (an iron reducer). Hg(0), dissolved Hg(II) and total Fe(II) were measured periodically over the course of the experiment to monitor the trends of phase distribution, redox transformation and thus mobility of Hg resulted from microbial
growth coupled with transit of secondary iron mineral formation. It was observed that equilibrium of Hg(II) adsorption onto Fe(III) minerals was reached rapidly presumably due to strong electrostatic interactions, and was not significantly disturbed after the
spike of bacterial cells. In addition, formation of Hg(0) corresponding to the growth of cells, as well as little detection of dissolved Hg(II) were observed. These results support the original hypothesis and indicate that Hg(II) deposited in the sedimentary zone would be reduced and released as Hg(0) on account of biogenic Fe(II) produced
by iron-reducing bacteria and therefore the entire process potentially promotes the movement of Hg in the aquifer environment.
關鍵字(中) ★ 異化性鐵還原
★ 地下含水層
★ 元素汞生成
★ 汞移動潛勢
關鍵字(英) ★ dissimilatory iron reducing bacteria
★ aquifers
★ formation of elemental mercury
★ mercury mobility
論文目次 目錄

中文摘要 ......................................................................................................................... I
Abstract ....................................................................................................................... III
目錄 .............................................................................................................................. ..V
圖目錄 ...................................................................................................................... .VIII
表目錄 ........................................................................................................................ . XI
第一章 前言 ................................................................................................................... 1
1.1 研究背景 ........................................................................................................... 1
1.2 研究目的 ........................................................................................................... 5
第二章 文獻回顧 ........................................................................................................... 6
2.1 汞的型態與特性 ............................................................................................... 6
2.2 環境中汞的排放源 ........................................................................................... 7
2.3 汞的毒性與相關法規 ....................................................................................... 9
2.4 汞於環境中的流佈情形 ................................................................................. 11
2.5 地下水汞污染案例 ......................................................................................... 13
2.6 汞在土壤及地下水的生地化反應 ................................................................. 16
2.7 汞在地下環境的沉澱錯合與吸附反應 ......................................................... 16
2.8 汞在地下環境的非生物性還原反應 ............................................................. 18
2.9 異化性鐵還原菌 ............................................................................................. 21
第三章 實驗材料、方法與設備 ................................................................................. 23
3.1 實驗架構 ......................................................................................................... 23
3.2 實驗藥品與試劑 ............................................................................................. 24
3.2.1 實驗試劑 ........................................................................................................ 24
3.2.2 試驗培養液成分與製備 ................................................................................ 26
3.3 實驗設備與儀器 ............................................................................................. 32
3.3.1 實驗設備 ........................................................................................................ 32
3.3.2 分析用儀器 .................................................................................................... 34
3.4 化學物種組成模擬軟體 ................................................................................. 34
3.5 氧化鐵礦製備與鑑定 ..................................................................................... 35
3.5.1 氧化鐵礦合成 ................................................................................................ 35
3.5.2 氧化鐵礦定性分析 ........................................................................................ 36
3.6 實驗用之模式菌種 ......................................................................................... 37
3.7 氧化鐵礦吸附汞離子實驗 ............................................................................. 37
3.7.1 比較以去離子水及分析培養液進行汞吸附實驗 ........................................ 38
3.7.2 添加死菌吸附平衡測試 ................................................................................ 39
3.8 Shewanella oneidensis MR-1 還原鐵礦測試 .................................................. 40
3.9 異化性鐵還原微生物縮模實驗 ..................................................................... 41
3.10 分析方法 ....................................................................................................... 42
3.10.1 汞分析 .......................................................................................................... 42
3.10.2 鐵分析 .......................................................................................................... 44
第四章 結果與討論 ..................................................................................................... 46
4.1 鐵礦合成及基本特性分析 ............................................................................. 46
4.1.1 鐵礦形貌 ........................................................................................................ 46
4.1.2 晶型結構鑑定 ................................................................................................ 48
4.1.3 鐵礦表面電位分析 ........................................................................................ 49
4.1.4 比表面積及粒徑分析 .............................................................................. 51
4.2 汞回收率試驗 ................................................................................................. 52
4.3 合成氧化鐵礦吸附實驗 ................................................................................. 54
4.3.1 比較不同水溶液條件下汞的吸附實驗 ........................................................ 60
4.3.2 汞脫附實驗 .................................................................................................... 62
4.4 Shewanella oneidensis MR-1 還原鐵礦測試 .................................................. 63
4.4.1 Shewanella oneidensis MR-1 生長曲線 ......................................................... 63
4.4.2 Shewanella oneidensis MR-1 還原鐵礦測試 ................................................. 65
4.5 異化性鐵還原微生物縮模實驗 ..................................................................... 67
4.5.1 實驗小結 ........................................................................................................ 74
4.5.2 環境意義 ........................................................................................................ 74
第五章 結論與建議 ..................................................................................................... 77
5.1 結論 ................................................................................................................. 77
5.2 建議 ................................................................................................................. 79
參考文獻 ....................................................................................................................... 80
附錄一 ........................................................................................................................... 90
圖目錄

圖 2-1 自然環境中汞的來源與生地化循環 ................................................................. 7
圖 2-2 每年全球主要人為排放源之汞排放量 ............................................................. 8
圖 2-3 不同的 Fe(II)/Fe(III)組合下的氧化還原潛勢(E h ) .......................................... 20
圖 3-1 吹氣捕捉(purge & trap)系統 ............................................................................ 33
圖 3-2 吹氣捕捉(Purge and trap )系統設置圖 ............................................................ 33
圖 3-3 以 Ferrozine 方法定量反應瓶產生之亞鐵 ..................................................... 45
圖 3-4 分光光度計分析 Fe(II)之檢量線 .................................................................... 45
圖 4-1 實驗自行製備的鐵礦保存於無氧水中,左為黃鐵礦(goethite)、右為赤鐵礦
(hematite)。 ................................................................................................... 47
圖 4-2 文獻中氧化鐵礦物所呈現的顏色 ................................................................... 47
圖 4-3 Hematite 與 Goethite 之 XRD 圖譜 .............................................................. 48
圖 4-4 以 1 mM MOPS 作為緩衝溶液,hematite 在不同 pH 下的界達電位值。
hematite 零電位點約 7.7。 .......................................................................... 50
圖 4-5 以 1 mM MOPS 作為緩衝溶液,goethite 在不同 pH 下的界達電位值。goethite
零電位點約 7.81。 ....................................................................................... 50
圖 4-6 總汞回收率試驗。添加至反應瓶中的 Hg(II)質量為 4 ng。白色條柱代表捕
捉瓶捕捉到的 Hg(0)質量,深灰色條柱代表於吹氣捕捉後反應瓶剩餘的
Hg(II)質量。SnCl 2 spike 為添加氯化亞錫作為還原劑。 ........................ 53
圖 4-7 兩種鐵礦與 Hg(II)在不同吸附時間下,系統中溶解汞的濃度變化 .......... 56
圖 4-8 模擬汞吸附至鐵及鋁氧化物表面(假設在沒有汞還原的條件下) ................ 57
圖 4-9 Hematite 在培養液中不同 pH 下的界達電位值。hematite 零電位點小於 5。
58
圖 4-10 Goethite 在培養液中不同 pH 下的界達電位值。goethite 零電位點小於 5。
58
圖 4-11 比較分別以去離子水及分析培養液進行汞的吸附實驗於反應時間 20 小時
後,Goethite 與 Hematite 反應瓶中汞的濃度 ........................................... 61
圖 4-12 比較不添加與添加死菌至汞與鐵礦達平衡吸附系統並靜置隔夜, ............ 63
圖 4-13 S. oneidensis MR-1 培養於 30℃、pH 7 的液態 defind medium 時,測量細
胞於試管中之吸光值隨著時間變化之生長曲線 ....................................... 64
圖 4-14 S. oneidensis MR-1 在不同鐵礦培養下,於特定時間點採樣分析反應瓶所
生成的總亞鐵濃度。 ................................................................................... 66
圖 4-15 S. oneidensis MR-1 培養於 goethite 與汞達平衡的系統,於特定時間點採樣
分析反應瓶內生成的總亞鐵濃度,其中 control 為不添加菌株之控制組、
live cells 為實驗組、以及 heat- killed cells 為死菌對照組。 ................. 69
圖 4-16 S. oneidensis MR-1 培養於 hematite 與汞達平衡的系統,於特定時間點採樣
分析反應瓶內生成的總亞鐵濃度,其中 control 為不添加菌株之控制組、
live cells 為實驗組、以及 heat- killed cells 為死菌對照組。 ................. 69
圖 4-17 S. oneidensis MR-1 培養於 goethite 與汞達平衡的系統,於特定時間點採樣
分析反應瓶內溶解汞的質量。 ................................................................... 70
圖 4-18 S. oneidensis MR-1 培養於 hematite 與汞達平衡的系統,於特定時間點採樣
分析反應瓶內溶解汞的質量。 ................................................................... 70
圖 4-19 S. oneidensis MR-1 培養於 goethite 與汞達平衡的系統,於特定時間點採樣
分析反應瓶內 Hg(0)的質量。.................................................................... 72
圖 4-20 S. oneidensis MR-1 培養於 hematite 與汞達平衡的系統,於特定時間點採樣
分析反應瓶內 Hg(0)的質量。.................................................................... 72
表目錄

表 2-1 國內汞公告管制標準 ...................................................................................... 10
表 3-1 維持 S. oneidensis MR-1 生長,複合培養基(complex medium)組成 .......... 27
表 3-2 維持 S. oneidensis MR-1 生長,確定培養液(defind medium)組成 ............. 28
表 3-3 進行吸附實驗及生物縮模試驗所用的(Assay medium)組成(pH = 7) .......... 29
表 3-4 Trace elements solution 之組成分 .................................................................... 30
表 3-5 Vitamin solution (Concentrated 10X)之組成份 ............................................... 31
表 3-6 氧化鐵礦吸附汞之實驗參數 .......................................................................... 38
表 3-7 以去離子水及分析培養液進行汞吸附實驗參數 .......................................... 39
表 3-8 吸附實驗參數-添加死菌試驗 ......................................................................... 40
表 4-1 與其他文獻之合成氧化鐵 pH pzc 值比較 ........................................................ 49
表 4-2 合成三價氧化鐵礦 Goethite 與 Hematite 比表面積及粒徑分布分析 ......... 51
表 4-3 以 Visual MINTEQ 模式模擬汞於 assay medium 中的物種濃度分布, .... 59
表 4-4 以 Visual MINTEQ 模式模擬汞於 distilled water 中的物種濃度分布, .... 61
參考文獻 參考文獻
1. Akob, D.M., Mills, H.J., Gihring, T.M., Kerkhof, L., Stucki, J.W., Anastacio,
A.S., Chin, K.-J., Kusel, K., Palumbo, A.V., Watson, D.B., and Kostka, J.E.,
“Functional diversity and electron donor dependence of microbial populations
capable of U(VI) reduction in radionuclide-contaminated subsurface sediments”,
Applied and Environmental Microbiology, vol.74, pp.3159-3170., 2008
2. AMAP/UNEP, “Technical Background Report to the Global Atmospheric
Mercury Assessment”, Arctic Monitoring and Assessment Programme/UNEP
Chemicals Branch, pp. 159, 2008.
3. Amirbahman A, Kent DB, Curtis GP, Marvin-Dipasquale MC, “Kinetics of
Homogeneous and Surface-Catalyzed Mercury(II) Reduction by Iron(II)”,
Environmental Science & Technology, vol.47, pp.7204-7213, 2013
4. Amyot, M., Lean, D.R., Poissant, L., and Doyon, M.R., “Distribution and
transformation of elemental mercury in the St. Lawrence River and Lake
Ontario”, Canadian Journal of Fisheries and Aquatic Sciences, vol. 57, pp.
155-163, 2000.
5. Andersson, A., “Mercury in soils”, The biogeochemistry of mercury in the
environment, pp. 79-122, 1979.
6. Baedecker, M.J., Cozzarelli, I.M., Evans, J.R., and Hearn, P.P., “Authigenic
mineral formation in aquifers rich in organic material”, Water-Rock Interaction,
pp. 257–261, 1992.
7. Barkay, T., Kritee, K., Boyd, E., and Geesey, G., “A thermophilic bacterial origin
and subsequent constraints by redox, light and salinity on the evolution of the
microbial mercuric reductase”, Environmental Microbiology., vol. 12, pp.
2904-2917, 2010.
8. Barkay, T., Miller, S.M., and Summers, A.O., “Bacterial mercury resistance
from atoms to ecosystems”, FEMS microbiology reviews, vol. 27, pp. 355-384,
2003.
9. Barringer, J.L., and Szabo, Z., “Overview of investigations into mercury in
ground water, soil, and septage, New Jersey Coastal Plain”, Water, Air, and Soil
Pollution, vol. 175, pp. 193-221, 2006.
10. Barringer, J.L., Szabo, Z., and Reilly, P.A., “Occurrence and mobility of mercury
in groundwater”, In Current Perspectives in Contaminant Hydrology and Water
Resources Sustainability. Bradley, P.M. Eds. InTech., 2013
11. Barringer, J.L., Szabo, Z., Kauffman, J., Barringer, T.H., Stackelberg, P.E.,
Ivahnenko, T., Rajagopalan, S., and Krabbenhoft, D.P., “Mercury concentrations in water from an unconfined aquifer system, New Jersey coastal plain”, Science
of the Total Environment, vol. 346, pp. 169-183, 2005.
12. Barringer, J.L., Szabo, Z., Schneider, D., Atkinson, W.D., and Gallagher, R.A.,
“Mercury in ground water, septage, leach-field effluent, and soils in residential
areas, New Jersey coastal plain”, Science of the Total Environment, vol. 361, pp.
144-162, 2006.
13. Barringer,.J.L., MacLeod, C.L., & Gallagher, R.A.. Mercury in ground water,
soils, and sediments of the Kirkwood-Cohansey aquifer system in
the New Jersey Coastal Plain. U.S. Geological Survey Open-File Report, pp.
95-475., 1997.
14. Barrow, N.J., and Cox, V.C., “The effects of pH and chloride concentration on
mercury sorption. I. By goethite”, Journal of Soil Science, vol. 43, pp. 295-304,
1992.
15. Bollen, A., Wenke, A., and Biester, H., “Mercury speciation analyses in
HgCl 2 -contaminated soils and groundwater—implications for risk assessment
and remediation strategies”, Water Research, vol. 42, pp. 91-100, 2008.
16. Bose, S., Hochella, M.F., Gorby, Y. A., Kennedy, D.W., McCready, D.E.,
Madden, A. S., and Lower, B.H., “Bioreduction of hematite nanoparticles by the
dissimilatory iron reducing bacterium Shewanella oneidensis MR-1”,
Geochimica et Cosmochimica Acta, vol. 73, pp. 962-976, 2009.
17. Bradley, P., and Journey, C., “Hydrology and methylmercury availability in
Coastal Plain streams”, In: Water Resources Management and Modeling, Nayak
P. (Ed.), InTech, pp. 169-190, 2012.
18. Brooks, W.E., “Mercury. U.S. Geological Survey 2000 Minerals Yearbook”,
2000.
19. Chapelle, F. H., “Groundwater Microbiology and Geochemistry”, Wiley, New
York, 1993.
20. Charlet, L., Bosbach, D., and Peretyashko, T., “Natural attenuation of TCE, As,
Hg linked to the heterogeneous oxidation of Fe (II): an AFM study”, Chemical
Geology, vol. 190, pp. 303-319, 2002.
21. Chesne, R.B., and Kim, C.S., “Zn (II) and Cu (II) adsorption and retention onto
iron oxyhydroxide nanoparticles: effects of particle aggregation and salinity”,
Geochemical transactions, vol. 15, pp. 1-12, 2014.
22. Clarkson, T.W., “Mercury: major issues in environmental health”,
Environmental Health Perspectives, vol. 100, pp. 31, 1993.
23. Colombo M.J., Ha J, Reinfelder J.R, Barkay T, Yee N.,"Oxidation of Hg(0) to
Hg(II) by diverse anaerobic bacteria", Chemical Geology, vol.363, pp.334–340, 2014
24. Cornell, R.M., and Schwertmann, U., “The iron oxides: structure, properties,
reactions, occurrences and uses”, 2nd, completely rev. and extended ed.,Wiley-
VCH : Weinheim , 2003.
25. Davidson, B., and Fisher, R.S., “Groundwater quality in Kentucky: mercury”,
Kentucky Geological Survey., 2005.
26. Ebinghaus R, Turner RR, Lacerda D, Vasiliev O, Salomons W. “Mercury
contaminated sites: characterization, risk assessment and remediation.“ Berlin,
Heidelberg, New York: Springer Environmental Science, Springer Verlag;. p.538,
1999
27. Fischer, P., and Gustin, M.S., “Influence of natural sources on mercury in water
sediment and aquatic biota in seven tributary streams of the East Fork of the
Upper Carson River, California”, Water, Air, Soil Pollution, vol. 133, pp. 283–
295, 2002.
28. Fitzgerald, W., Engstrom, D., Mason, R., and Nater, E., "The case for
atmospheric contamination in remote areas", Environmental Science &
Technology, vol. 32, pp. 1-7, 1998.
29. Fitzgerald, W.F., Lamborg, C.H., and Hammerschmidt, C.R., “Marine
biogeochemical cycling of mercury”, Chemical reviews, vol. 107, pp. 641-662,
2007a.
30. Fitzgerald, W.F., Lamborg, C.H., Heinrich, D.H., Karl, K.T., “Geochemistry of
mercury in the environment”, Treatise on geochemistry, Oxford: Pergamon, pp.
1-47, 2007b.
31. Gabriel, M.C., and Williamson, D.G., “Principal biogeochemical factors
affecting the speciation and transport of mercury through the terrestrial
environment”, Environmental Geochemistry and Health, vol. 26, pp. 421-434,
2004.
32. Gralnick, J.A., and Newman, D.K., “Extracellular respiration.” Mol Microbiol.
vol. 65, pp. 1-11 , 2007
33. Gray, J.E., and Hines, M.E., “Mercury: Distribution, transport, and geochemical
and microbial transformations from natural and anthropogenic sources”, Applied
Geochemistry, vol. 21, pp. 1819-1820, 2006.
34. Gu, B., Bian, Y., Miller, C.L., Dong, W., Jiang, X., and Liang, L., “Mercury
reduction and complexation by natural organic matter in anoxic environments”,
Proceedings of the National Academy of Sciences, vol. 108, pp. 1479-1483,
2011.
35. Gunneriusson, L., Sjöberg, S., “Surface Complexation in the H+-Goethite
(α-FeOOH)-Hg (II)-Chloride System”, Colloid and Interface Science, vol. 156, pp.121-128.,1993
36. Gunneriusson, L., Baxter, D., and Emteborg, H, “Complexation at low
concentrations of methyl and inorganic mercury (II) to a hydrous goethite (α
-FeOOH) surface”, Journal of colloid and interface science, vol. 169, pp.
262-266, 1995.
37. Hamelin, S., Amyot, M., Barkay, T., Wang, Y., and Planas, D., “Methanogens:
principal methylators of mercury in lake periphyton”, Environmental Science &
Technology, vol. 45, pp. 7693-7700, 2011.
38. Hemond, H.F., and Fechner, E.J., “Chemical Fate and Transport in the
Environment”, Elsevier Inc. San Diego, CA., 2015
39. Heron, G., and Christensen, T.H., “Impact of sediment-bound iron on redox
buffering in a landfill leachate polluted aquifer (Vejen, Denmark)”,
Environmental Science & Technology, vol. 29, pp. 187-192, 1995.
40. Hu, H., Lin, H., Zheng, W., Rao, B., Feng, X., Liang, L., Elias, D.A., and Gu, B.,
“Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens
PCA”, Environmental Science & Technology, vol. 47, pp. 10922-10930, 2013.
41. Iwahori, K., Takeuchi, F., Kamimura, K., and Suqio, T., “Ferrous ion-dependent
volatilization of mercury by the plasma membrane of Thiobacillus ferrooxidans.”
Applied and Environmental Microbiology, vol.66, pp. 3823-3827. , 2000
42. Jaeglé L., “Atmospheric Long-Range Transport and Deposition of Mercury to
Alaska”: A Report to the Alaska Department of Environmental Conservation.,
2010.
43. Jennings, S.R., Blicker, P.S., and Neuman, D.R., “Acid mine drainage and effects
on fish health and ecology: a review”, Reclamation Research Group, 2008.
44. Jiang, S., Lee, J.H., Kim, D., Kanaly, R.A., Kim, M.G., Hur, H.G.,"Di ff erential
Arsenic Mobilization from As-Bearing Ferrihydrite by Iron-Respiring
Shewanella Strains with Di ff erent Arsenic-Reducing Activities",Environmental
Science & Technology, vol.47, pp. 8616 − 8623., 2013
45. Juncosa, E.C.," Adsorption properties of synthetic iron oxides. - as(V) adsorption
on goethite (alpha-FeOOH)”, 2008
46. Johansson K., Aastrup M. Andersson A. Bringmark L. and Iverfeldt Å . "Mercury
in Swedish forest soils. Assessement of critical load . "Water Air and Soil
Pollution , vol.56, pp: 267- 281, 1991
47. Johannesson K.H., Neumann K., "Geochemical cycling of mercury in a deep,
confined aquifer: Insights from biogeochemical reactive transport modeling",
Geochimica et Cosmochimica Acta , vol. 106, pp. 25- 43., 2013.
48. Klausen J., Troeber S.P., Haderlein S.B., Schwarzenbach R.P., "Reduction of Substituted Nitrobenzenes by Fe(II) in Aqueous Mineral Suspensions",
Environmental Science & Technology, vol 29, pp 2396–2404., 1995
49. Khare, N., Hesterberg, D., Beauchemin, S., and Wang, S.L., “XANES
determination of adsorbed phosphate distribution between ferrihydrite and
boehmite in mixtures”, Soil Science Society of America Journal, vol. 68, pp.
460-469, 2004.
50. Khatiwada, N.R., Takizawa, S., Tran, T.V.N., and Inoue, M., "Groundwater
contamination assessment for sustainable water supply in Kathmandu Valley,
Nepal" ,Water Science and Technology , vol. 46, pp. 147-154. , 2002
51. Kim, C.S., Rytuba, J.J., and Brown, G.E., “EXAFS study of mercury (II)
sorption to Fe-and Al-(hydr) oxides: I. Effects of pH”, Journal of colloid and
interface science, vol. 271, pp. 1-15, 2004.
52. Kinniburgh, D.G., and Jackson, M.L., “Adsorption of mercury(II) by iron
hydrous oxide gel”, Soil Science Society of America Journal, vol. 42, pp. 45-47,
1978.
53. Kosmulski, M, " pH-dependent surface charging and points of zero charge. IV.
Update and new approach" Colloid and Interface Science, vol 337, pp 439–448.,
2009
54. Koterba, M.T., Andres, A.S., Vrabel, J., Grilley, D.M., Szabo, Z., DeWild, J.F.,
Aiken, G.R., and Padro, B.R, "Occurrence and distribution of mercury in the
surficial aquifer, Long Neck Peninsula, Sussex County, Delaware, 2003-2004",
U.S. Geological Survey Scientific Investigations Report., 2006
55. Kukkadapu, R.K., Zachara, J.M., Fredrickson, J.K., and Kennedy, D.W.,
“Biotransformation of two-line silica-ferrihydrite by a dissimilatory Fe
(III)-reducing bacterium: formation of carbonate green rust in the presence of
phosphate”, Geochimica et Cosmochimica Acta, vol. 68, pp. 2799-2814, 2004.
56. Lamborg, C.H., Fitzgerald, W.F., O’Donnell, J., and Torgersen, T., “A
non-steady-state compartmental model of global-scale mercury biogeochemistry
with interhemispheric atmospheric gradients”, Geochimica et Cosmochimica
Acta, vol. 66, pp. 1105-1118, 2002.
57. Lamborg, C.H., Kent, D.B., Swarr, G.J., Munson, K.M., Kading, T., O’Connor,
A.E., ... and Wiatrowski, H.A., “Mercury speciation and mobilization in a
wastewater-contaminated groundwater plume”, Environmental Science &
Technology, vol. 47, pp. 13239-13249, 2013.
58. Lee, X., Bullock, O.R., and Andres, R.J., “Anthropogenic emission of mercury to
the atmosphere in the northeast United States”, Geophysical research letters, vol.
28, pp. 1231-1234, 2001.
59. Li, S.Z., Xu, R.K., “Electrical double layer’s interactionn between oppositely
charged particles as related to surface charge density and ionic strength”,
Colloids and Surfaces A: Physicochemical and Engineering Aspects vol 326, pp.
157-161, 2008.
60. Lin, C.-C., Yee, N., and Barkay, T., “Microbial transformations in the mercury
cycle”, In Environmental Chemistry and Toxicology of Mercury, Liu, G., Cai, Y.,
O’Driscoll, N., Eds., John Wiley & Sons, Inc. Hoboken, NJ, pp 155−192., 2012.
61. Lin, H., Morrell-Falvey, J.I., Rao, B., Liang, L., and Gu, B., “Coupled
mercury-cell sorption, reduction, and oxidation on methylmercury production by
Geobacter sulfurreducens PCA.” Environmental Science & Technology, vol.48,
pp. 11969-11976. , 2014
62. Liu C., Kota S., Zachara J.M., Fredrickson J.K., Brinkman C.,"Kinetic Analysis
of the Bacterial Reduction of Goethite" Environmental Science & Technology,
vol.35, pp.2482 - 2490., 2001
63. Liu, G., Cai, Y., and O′Driscoll, N. (Eds.), “Environmental chemistry and
toxicology of mercury”, John Wiley & Sons, 2012.
64. Lockwood, R. A., and Chen, K. Y., “Adsorption of mercury (II) by hydrous
manganese oxides”, Environmental Science & Technology, vol. 7, pp. 1028-1034,
1973.
65. Lovley, D.R., Fraga, J.L., Blunt-Harris, E.L., Hayes, L.A., Phillips, E.J.P., and
Coates, J.D., “Humic substances as a mediator for microbially catalyzed metal
reduction”, Acta hydrochimica et hydrobiologica, vol. 26, pp. 152-157, 1998.
66. Lovley, D.R., Stolz, J.F., Nord, G.L., and Phillips, E.J., “Anaerobic production of
magnetite by a dissimilatory iron-reducing microorganism”, Nature, vol. 330, pp.
252-254, 1987.
67. Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A., and Bond,
D.R., “Shewanella secretes flavins that mediate extracellular electron transfer”,
Proceedings of the National Academy of Sciences, vol. 105, pp. 3968-3973,
2008.
68. Martin, R.S., Witt, M. L. I., Sawyer, G.M., Thomas, H.E., Watt, S.F.L., Bagnato,
E., ... and Mather, T.A., “Bioindication of volcanic mercury (Hg) deposition
around Mt. Etna (Sicily)”, Chemical Geology, vol. 310, pp. 12-22, 2012.
69. Mason, R.P., Fitzgerald, W.F., and Morel, F.M., “The biogeochemical cycling of
elemental mercury: anthropogenic influences”, Geochimica et Cosmochimica
Acta, vol. 58, pp. 3191-3198, 1994.
70. Mathur, S.S., and Dzombak, D.A., “Surface complexation modeling: goethite”,
Interface Science and Technology, vol. 11, pp. 443-468, 2006.
71. Morel, F.M., Kraepiel, A.M., and Amyot, M., “The chemical cycle and
bioaccumulation of mercury”, Annual review of ecology and systematics, pp.
543-566, 1998.
72. Morrison, R.D., “Potential health impacts of subsurface sewage sludge disposal
upon groundwater resources”, In Quality of groundwater: Proceedings of an
international symposium, vol. 17, pp. 305, 1981.
73. Mukherjee, A.B., Zevenhoven, R., Brodersen, J., Hylander, L.D., and
Bhattacharya, P., “Mercury in waste in the European Union: sources, disposal
methods and risks”, Resources, Conservation and Recycling, vol. 42, pp.
155-182, 2004.
74. Murphy, E.A., and Aucott, M., “A methodology to assess the amounts of
pesticidal mercury used historically in New Jersey”, Journal of Soil
Contamination, vol. 8, pp. 131-148, 1999.
75. Murphy, E.A., Dooley, J., Windom, H.L., and Smith, R.G., “Mercury species in
potable ground water in southern New Jersey”, Water Air, and Soil Pollution, vol.
78, pp. 61-72, 1994
76. National Research Council (2000)
77. Neumann, R.B., Ashfarue, K.N., Badruzzaman, A.B.M., Ali, M.A., Shoemaker,
J.K., and Harvey, C.F., “Anthropogenic influences on groundwater arsenic
concentrations in Bangladesh”, Nat. Geosci., vol. 3, pp. 46-52., 2010.
78. Nriagu J.O., “The biogeochemistry of mercury in the environment”, New York:
Elsevier/North Holland Biomedical Press, pp. 696, 1979.
79. O’Loughlin, E.J., Kelly, S.D., Kemner, K.M., Csencsits, R., and Cook, R.E.,
“Reduction of Ag I, Au III, Cu II, and Hg II by Fe II/Fe III hydroxysulfate green
rust”, Chemosphere, vol. 53, pp. 437-446, 2003.
80. Pacyna, E. G., Pacyna, J. M., Fudala, J., Strzelecka-Jastrzab, E., Hlawiczka, S.,
& Panasiuk, D., “Mercury emissions to the atmosphere from anthropogenic
sources in Europe in 2000 and their scenarios until 2020”, Science of the Total
Environment, vol. 370, pp. 147-156, 2006.
81. Peretyazhko, T., Charlet, L., and Grimaldi, M., "Production of gaseous mercury
in tropical hydromorphic soils in the presence of ferrous iron: a laboratory study",
European journal of soil science, vol. 57, pp. 190-199, 2006.
82. Protano, G., Riccobono, F., and Sabatini, G., "Does salt water intrusion constitute
a mercury contamination risk for coastal fresh water aquifers?" Environmental
pollution, vol. 110, pp. 451-458., 2000
83. Pirrone N, Mahaffey KR. "Dynamics of mercury pollution on regional and
global scales: atmospheric processes and human exposures around the world. "New York: Springer. P. 744., 2005
84. Ramamoorthy, S., Rust, B.R., “Heavy metal exchange processes in
sediment-water systems”, Environmental Geology, vol. 2, pp. 165-172, 1978.
85. Report to EPA, 1998
86. Richard J.H., Bischoff C., Ahrens C.G.M, Biester H.,"Mercury(II) reduction and
co-precipitation of metallic mercury on hydrous ferric oxide in contaminated
groundwater", Environmental Science & Technology, vol.539, pp. 36 − 44., 2016
87. Rothenberg, S.E., Feng, X., and Li, P., “Low-level maternal methylmercury
exposure through rice ingestion and potential implications for offspring health”,
Environmental pollution, vol. 159, pp. 1017-1022, 2011
88. Rundgren, S., Rühling, Å ., Schlüter, K., and Tyler, G., “Mercury in Soil:–
distribution, speciation and biological effects”, 1992.
89. Saether, O.M., Storroe, G., Segar, D., and Krog, R., “Contamination of soil and
groundwater at a former industrial site in Trondheim, Norway”, Applied
Geochemistry, vol. 12, pp. 327-332, 1997.
90. Schaefer, J.K., Rocks, S.S., Zheng, W., Liang, L., Gu, B., and Morel, F. M.,
“Active transport, substrate specificity, and methylation of Hg (II) in anaerobic
bacteria”, Proceedings of the National Academy of Sciences, vol. 108, pp.
8714-8719, 2011.
91. Schuster, P.F., Krabbenhoft, D.P., Naftz, D.L., Cecil, L.D., Olson, M.L., Dewild,
J.F., ... and Abbott, M.L., “Atmospheric mercury deposition during the last 270
years: a glacial ice core record of natural and anthropogenic sources”,
Environmental Science & Technology, vol. 36, pp. 2303-2310, 2002.
92. Schwertmann, U., and R.M. Cornell, “Iron oxides in the laboratory: preparation
and characterization”, WILEY-VCH Verlag GmbH , 2000
93. Schwertmann, U.,and Pfab G., “Structural vanadium in synthetic goethites”,
Geochimica et Cosmochimica Acta, vol. 58, pp. 4349-4352, 1994.
94. Shi L., Richardson, D.J., Wang Z., Kerisit S., Rosso K., “The roles of outer
membrane cytochromes of Shewanella and Geobacter in extracellular electron
transfer”, Environmental Microbiology Reports , vol.1, 220–227, 2009
95. Stein, E.D., Cohen, Y., and Winer, A.M., “Environmental distribution and
transformation of mercury compounds”, Critical reviews in Environmental
Science and technology, vol. 26, pp. 1-43, 1996.
96. Stoor, R.W., Hurley, J.P., Babiarz, C.L., and Armstrong, D.E., “Subsurface
sources of methyl mercury to Lake Superior from a weland-forested watershed”,
Environmental Science & Technology, vol 368, pp. 99-110., 2006
97. Streets, D.G., Hao, J., Wu, Y., Jiang, J., Chan, M., Tian, H., and Feng, X.,
“Anthropogenic mercury emissions in China”, Atmospheric environment, vol. 39,
pp. 7789-7806, 2005.
98. Stumm, W., and Sulzberger, B., " The cycling of iron in natural environments:
Considerations based on laboratory studies of heterogeneous redox processes .”
Geochimica et Cosmochimica Acta, vol 56, pp.3233-3257, 1992
99. Tewalt, S.J., Bragg, L J., and Finkelman, R.B., “Mercury in US coal; abundance,
distribution, and modes of occurrence”, U.S. Geological Survey Fact Sheet
FS-095-01, 2001.
100. Ullrich, S.M., Tanton, T.W., and Abdrashitova, S.A., “Mercury in the aquatic
environment: a review of factors affecting methylation”, Critical reviews in
Environmental Science and Technology, vol. 31, pp. 241-293, 2001.
101. UNEP Chemicals Branch, “The global atmospheric mercury assessment: sources,
emissions and transport”, Geneva: UNEP-Chemicals Branch, pp. 44, 2008.
102. USEPA Method 245.1: Determination of mercury in water by cold
vapor atomic absorption spectrometry.
103. USEPA Method 1631, revision E: Mercury in water by oxidation, purge
and trap, and cold vapor atomic fluorescence spectrometry.
104. USEPA, “Mercury Study Report to Congress”, Washington (DC): Office of Air
Quality and Standards and Office of Research and Development, U.S.
Environmental Protection Agency, EPA-452/R-97-009, 1997.
105. USEPA, “National primary drinking water standards”, United States
Environmental Protection Agency, EPA 816-F-01-007, 2001a.
106. USEPA Water quality criterion for the protection of human health: Methyl‐
mercury. EPA-823-R-01-001. , 2001b.
107. Vandeven, J.A., and Mcginnis, S.L., “An assessment of mercury in the form of
amalgam in dental wastewater in the United State”, Water, air, and soil pollution,
vol. 164, pp. 349-366, 2005.
108. Wang, Q., Kim, D., Dionysiou, D.D., Sorial, G.A., and Timberlake, D., “Sources
and remediation for mercury contamination in aquatic systems—a literature
review”, Environmental pollution, vol. 131, pp. 323-336, 2004.
109. Wiatrowski, H.A., Das, S., Kukkadapu, R., Ilton, E.S., Barkay, T., and Yee, N.,
“Reduction of Hg(II) to Hg(0) by magnetite”, Environmental Science &
Technology, vol. 43, pp. 5307-5313, 2009.
110. Wiatrowski, H.A., Ward, P.M., and B“arkay, T., “Novel reduction of mercury (II)
by mercury-sensitive dissimilatory metal reducing bacteria”, Environmental
Science & Technology, vol. 40, pp. 6690-6696, 2006.
111. Xu, W., Hu, P., Li, J.H., Li, X.M., Zhou, S.G., “Mechanisms of microbial Fe(II)
respiration: a review”, Chinese Journal of Ecology, vol. 27, 2008.
112. Yin Yujun., Li Yimin., Herbert E. Allen., and Huang C.P.,"Adsorption
/desorption and transport of mercury and arsenic in new jersey soils ., 1995
113. Yan, W. L., Li, X. Q., Zhang, W. X. “Nanoscale zerovalent iron (nZVI): The
core-shell structure and reactions with heavy metal ions“. International
Environmental Nanotechnology Conference, Oct 6-9, Chicago, IL, 2008
114. Zachara, J.M., Fredrickson, J.K., Li, S. M., Kennedy, D.W., Smith, S.C., and
Gassman, P. L., “Bacterial reduction of crystalline Fe 3+
oxides in single phase
suspensions and subsurface materials”, American Mineralogist, vol. 83, pp.
1426-1443, 1998.
115. Zeng H., Singh A., Basak S., Ulrich KU., Sahu M., Biswas P., Catalano
JG., Giammar DE., “Nanoscale size effects on uranium (VI) adsorption to
hematite”, Science & Technology, vol. 43, pp.1373., 2009
116. Zhang, H., “Photochemical redox reactions of mercury”, Recent Developments
in Mercury Science, pp. 37-79., 2006.
117. Zwietering M.H., Jongenburger I, Rombouts FM, van ′t Riet K.., “Modeling of
the Bacterial Growth Curve”, Applied and Environmental Microbiology, pp.
1875-1881, 1990
118. 行政院環境保護署,「環境檢驗品管分析執行指引」,NIEA-PA104.,NIEA
W331.50B
119. 行政院環境保護署,http://www.epa.gov.tw/。
120. 廖炳傑,「異化性鐵還原狀態下非生物性汞氧化還原作用及其對地下水水質
之影響」,國立中央大學環境工程研究所碩士論文,2014。
指導教授 林居慶 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明