以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:56 、訪客IP:18.118.198.33
姓名 陳如瑜(Ju-Yu Chen) 查詢紙本館藏 畢業系所 大氣科學學系 論文名稱 S與C波段雙偏極化雷達參數定量降雨估計之探討
(Discussions of Quantitative Precipitation Estimation Using S- and C-band Dual-polarimetric Radars)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 由於台灣降雨既豐沛又極端,準確的定量降雨估計顯得格外重要。未來台灣將由S及C波段雙偏極化雷達組成雷達降雨估計網,而雙偏極化雷達參數會因其波長差異而有不同的特性,這特性將影響其應用於降雨估計的結果。此研究目的為分析不同波段雷達其降雨公式的表現,以利於未來各波段雷達之定量降雨估計網的整合。
本研究使用設置於國立中央大學(NCU)測站長達6年以上之二維雨滴譜儀資料,依月份分類降雨類型(春雨、梅雨、午後熱對流、颱風、冷鋒面)後經T-matrix散射模擬雙偏極化雷達參數,並回歸三波段雷達各降雨類型之雷達參數-降雨關係式(係數),分別為R-Z、R-KDP、R-(Z,ZDR)及R-(KDP,ZDR)。研究個案選自2014年3月至2015年8月8日蘇迪勒颱風前,由NCU C-Pol與RCWF S波段雷達共同觀測之個案,共9個案累計20小時。將雷達觀測參數進行資料品管後套用至各降雨公式,並使用地面96個雨量站資料評估雷達降雨估計之表現。
在未考慮雷達觀測誤差下,由雨滴譜儀模擬參數進行降雨公式(係數)之測試,結果顯示與統一公式(係數)相比,套用對應降雨類型公式(係數)後以R-(Z,ZDR)公式的改善最為明顯。而在雷達資料品管中使用自洽法修正Z偏差量與濕天線罩效應之衰減量,皆能明顯改善S與C波段雷達其降雨估計的表現。兩雷達於各個案降雨估計的比較,整體上 KDP參數之組合型公式(Hybrid)有最佳的表現;當兩雷達資料樣本數相近時,短波段雷達其KDP參數於降雨估計的優勢能明顯被凸顯,有較低的RRMSE與較高的相關係數。而後深入探討影響各降雨公式誤差表現之因子,包含ZDR觀測誤差造成降雨高估;濕天線罩效應致ZDR的誤差具空間分佈,使估計雨量圖有一明顯雨量不連續帶;以及Z參數公式受DSD隨高度變化影響對資料選取高度相對敏感等問題。在最後討論中顯示部分個案可透過合併兩雷達資料(即增加觀測資料數)而進一步提升降雨估計之準確度。摘要(英) To monitor extreme precipitation, the operational radar network in Taiwan will be set up with dual-polarimetric radars at S and C-band. It should be noted that each polarimetric parameter of different wavelength radars for quantitative precipitation estimation (QPE) has unique advantages and disadvantages. Thus, the goal of this study is to discuss and analyze QPE products of each radar as a base for merging rain maps.
Four different QPE relationships of each rain types, namely R-Z,R-KDP, R-(Z,ZDR) and R-(KDP,ZDR), are obtained from over-six-year NCU 2D-Video disdrometer data and applied to nine events observed by both RCWF S-band and NCU C-Pol radars from March of 2014 to August of 2015. The performances of radar-based QPE are investigated by comparing with 96 rain gauges.
Without considering radar measurement error, in the rain-type coefficients test by simulated radar parameters, it shows that most of algorithms improve after applied into the corresponding coefficients with respect to general coefficients, and R-(Z,ZDR) algorithm has the most significant improvement. In the radar data quality control process, the wet radome effect correction of Z has a positive impact on RCWF as well as NCU C-Pol radar. Overall,KDP-based relationships which combine with R-Z are the most accurate. In the comparable sampling frequency test, NCU C-Pol radar shows the advantage of KDP parameter for QPE at shorter wavelength with lower RRMSE and higher correlation coefficient. Besides, the factors resulting in QPE errors of each algorithm will be discussed, such as measurement error, wet radome effect and DSD variability with height. In the last part, the result indicates that when two radars’ data are included whenever available, the QPE performance can be further improved.關鍵字(中) ★ 雷達降雨估計
★ 雙偏極化雷達關鍵字(英) 論文目次 中文摘要…………………..………………………………………………………………………………………….……………….i
英文摘要....................................................................................................................................ii
誌謝...........................................................................................................................................iii
目錄……………………………………………………………………………………………………………………………………..iv
圖目錄………………………………………………………………………………………………………………………………....vi
表目錄………………………………………………………………………………………………………………………..…………x
第一章 緒論………………………………………………………………………………………………………………………1
1.1動機………………………………………………………………………………………….……………………..1
1.2文獻回顧………………………………………………………………………………………….………………2
1.3研究方向………………………………………………………………………………………….………………3
第二章 資料與方法………………………………………………………………………….……………………………….5
2.1雨滴譜儀資料與處理……………………….………………………………………….….………………5
2.2降雨關係式係數計算…...……………………………………………………….…………………….…6
2.3雷達資料來源……………………………………………………………………………….…………………9
2.4雷達資料品質控管……………………………………………………………………….….……………10
2.5定量降雨估計與評估方法……………………………………………………………….……………13
第三章 雨滴譜儀與雷達資料處理對降雨估計的影響…………………..………………………………15
3.1雨滴譜儀資料進行降雨類型分類對偏極化雷達參數降雨估計的影響….……15
3.2 濕天線罩效應與Z衰減修正對雷達降雨估計的影響…………………………..………16
3.2.1 NCU C-Pol雷達…………………………………………………….……………………………………..17
3.2.2 RCWF雷達………………………………………………………………………………………………….19
3.2.3綜合討論…………………………………………………………………………………………………….20
第四章 雷達降雨估計比較與分析……………………………………………………….…………………………22
4.1雷達降雨估計比較…………………………………………….………………………………………….22
4.2降雨公式在不同降雨強度的表現……..……………………………….………………………..23
4.3 Z_DR低估對降雨估計的影響…….…………………………………………….……………………..25
4.4濕天線罩效應致Z_DR 誤差的空間分佈對降雨估計的影響…………..........……….27
4.5雷達資料選取高度對降雨估計的影響…….…………………………………………………..28
4.6颱風個案討論………………………………………….…………………………………………………….29
4.7兩雷達資料樣本數整合之測試……………….………………………….………………………..30
第五章 結論與未來展望…………………………………………………………………………………………………32
5.1結論…………………………………………………………………….…………………………………………32
5.2未來展望………………………………………………………….……………………………………………33
參考文獻…………………………………………………………………………………………………………………………….35
附圖…………………………………………………………………………………………………………………………………….38
附表…………………………………………………………………………………………………………………………………….69參考文獻 張偉裕,2002 : 利用雨滴譜儀分析雨滴粒徑分佈(納莉颱風個案),國立中央大學碩士論文,95頁
紀博庭,2005 : 利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究,國立中央大學碩士論文,70頁
A. Ryzhkov, and D. S. Zrnić, 1996 : Rain in shallow and deep convection measured with a polarimetric radar. J Atmos. Sci., 53, 2989-2995.
A. Ryzhkov, and D. S. Zrnić, 1996 : Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteorol., 35, 2080-2090.
A. Ryzhkov, and D. S. Zrnić : Radar polarimetry at S, C, and X bands comparative analysis and operational implications, 32nd Conference on Radar Meteorology.
A. Ryzhkov et al., 2014 : Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking, J. Atmos. Oceanic Technol., vol 31, 599-619.
Battan, L. J., 1973 : Radar observation of the atmosphere. University of Chicago Press, 324.
Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990 : An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829-840.
Brandes, E., G. Zhang, and J. Vivekanandan, 2002 : Experiments in rainfall estimation with polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674-685.
Carlton W. Ulbrich, and David Atlas, 1997 : Rainfall microphysics and radar properties : analysis methods for drop size spectra. J. Appl. Meteor., 39, 912-923.
Chang W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009 : Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar. J. Atmos. Oceanic Technol., 26, 1973-1993.
Chen C. S., and Y. L. Chen, 2003:The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323-1341.
Emmanuel, I., H. Andrieu, and P. Tabary, 2012: Evaluation of the new French operational weather radar product for the field of urban hydrology. Atmos. Res., 103, 20-32.
Figueras i Ventura, and Tabary, 2013 : The new French operational polarimetric radar rainfall rate product. J. Appl. Meteor. Climatol., 52, 1817-1835.
Figueras i Ventura, J., A.-A. Baumahmoud, B. Fradon, P. Dupuy, and P. Tabary, 2012 : Long-term monitoring of French polarimetric radar data quality and evaluation of several polarimetric quantitative precipitation estimators in ideal conditions for operational implementation at C-band. Quart. J. Roy. Meteor. Soc., 138, 2212-2228.
Giangrande, S., and A. Ryzhkov, 2008 : Estimation of rainfall based on the results of polarimetric echo classification., J. Appl. Meteor., 47, 2445-2462.
Koschmieder, H., 1934 : Methods and results of definite rain measurements. Mon. Wea. Rev., 62, 5-7.
Lee J.-K., Kim J.-H., and Suk M.-K., 2015 : Application of bias correction methods to improve the accuracy of quantitative radar rainfall in Korea, Atmos. Meas. Tech. Discuss., 8, 11429-11465
Levenberg, K., 1944 : A method for the solution of certain problems in least squares, Quart. Appl. Math., 2, 164-168.
Maesaka T., M. Maki, K. Iwanami, S. Tsuchiya, K. Kieda, and A. Hoshi, 2011 : Operational rainfall estimation by X-band MP radar network in MLIT, Japan. Proc. 35th Int. Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 142.
Vivekanandan J., W. M. Adams, and V. N. Bringi, 1991 : Rigorous approach to polarimetric radar modeling of hydrometeor orientation distributions., J. Appl. Meteor., 30, 1053-1063
Vulpiani, G., M. Montopoli, L. Delli Passeri, A. Giola, P. Giordano, and F. Marzano, 2012: On the use of dual-polarized C-band radar for operational rainfall retrieval in mountainous area. J. Appl. Meteor. Climatol., 51, 405-425.
Yuter S. E., and R. A. Houze Jr., 1995 : Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941-1963.
Zawadzki, and I., 1984: Factors affecting the precision of radar measurements of rain. Proc. 22nd Int. Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 251-256.指導教授 陳台琦、廖宇慶 審核日期 2016-12-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare