博碩士論文 103226005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.118.142.230
姓名 戴振全(Jen-Chuan Dai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
(Application of one-snap multi-angle spectroscopy optical system for studying of spatial spectra of organic light emitting diodes)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 光激發有機極化子元件之模擬與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究著重於即時多角度量測光譜儀系統架設與校準步驟,並且嘗試將其應用於有機發光二極體之空間頻譜的研究上。系統光學設計方面,採用Afocal系統架設,此理論不僅利於系統之架設;亦利於系統放大倍率之匹配。此外,在光路系統上,光由物鏡進入系統且將角度維度展開,在狹縫上擷取出空間頻譜,並且在光柵使波長維度分光。
首先,系統架設初期,需觀察由CMOS(Complementary Metal-Oxide-Semiconductor)上pixel所對應之真實波長與角度,亦利用Lambertian光源確認光路系統在光學上成像是否清晰,且波長未飄移。將三種不同波長(635 nm、532 nm、473 nm)之雷射入射系統,搭配汞燈頻譜(546.07 nm、576.96 nm、579.07 nm)做為波長校正之入射光源,透過波長校正可知此系統在波長維度上成線性關係。再者,角度校正方面,亦利用三種不同波長(635 nm、532 nm、473 nm)之雷射入射系統,發現其系統之角度校正與入射光源之波長無關,系統角度維度上成三次多項式曲線。最終,光強校正的部份,本實驗採用工研院所提供之高穩定性的藍、綠光有機發光二極體(organic light emitting diodes, OLED)做系統光強校正,並且利用本實驗室自行製作之紅光(NPB/TPB3:DCJTB/Alq3)、綠光(NPB /Alq3)元件來驗證其光強校正的準確性。
此外,實驗的過程中亦發現了,即時多角度量測光譜儀系統之優點,其變因相較於傳統光纖系統少,且元件面積以及其穩定性要求較低。拍攝過程上即時多角度量測光譜儀系統可以立即(<1 s)擷取到待測物之影像,相較於光纖需要長時間的驅動,光譜儀系統更加便利且迅速。而兩系統擷取影像的方式亦不同,即時多角度量測光譜儀系統將待測物(面光源)直接靠置於物鏡上收光,而光纖系統需離待測物7 mm高且掃動,因此光纖系統對於元件面積需求,相較於即時多角度量測光譜儀系統來的高。
本論文主要有兩重點,首先在於如何架設以及驗證其即時量測系統的正確性,再者如何提供一個可重複的方法來量測有機發光二極體的空間頻譜。此系統不僅可應用於一般OLED的空間頻譜量測,預期未來可進一步應用於有機微共振腔元件的光譜量測,有助於有機雷射之研究。
摘要(英) The paper focus on the studying of establishment and calibration the one-snap multi-angle spectroscopy optical system, and apply for organic light emitting diodes. The optical system is designed by the Afocal system, which makes establish the system simpler but also easier match magnification. Furthermore, the light of the analyte is collected by the object lens and expand the information of angle dimension. The space spectrum is limited by the system slit, and wavelength dimension is separated by the grating.
First, we obtain that the wavelength corresponds to the pixel of Complementary Metal-Oxide-Semiconductor (CMOS) in the early of the establishment, and use the Lambertian source to confirm the imaging and the system wavelength. The wavelength calibration which uses three different wavelength laser (635 nm, 532 nm, 473 nm) and the mercury lamp (546.07 nm, 576.96 nm, 579.07 nm) incidence the optical system, and show that the system is linear in the wavelength dimension. Second, the angle calibration shows that the system is the cubic polynomial curve in the angle dimension, and wavelength independent. Finally, Industrial Technology Research Institute provide the high stability organic light-emitting diodes (OLED), which are used to correct the optical system intensity in this paper. The paper uses the red (NPB/TPB3:DCJTB/Alq3) and green (NPB /Alq3) OLED to confirm the intensity correction result and the accuracy.
Moreover, the advantage of one-snap multi-angle spectroscopy optical system can be obtained from the experiment procedure, and the requirement of the element is less than the fiber system and the variable is less too. The one-snap multi-angle spectroscopy optical system is more convenient and fast, which can capture the image immediately (<1 s), compare to the fiber system, which needs the longer drive time. However, the way of the two system capture image is also different, and the spectroscopy optical system capture image directly the element attached to the objective lens. The fiber system must stay a certain height (7 mm) and sweep, therefore, it needs the larger element active area.
There are two important points in this paper. First, the establishment step and the calibration. Second, provides a reproducible way to measure the spatial spectrum of OLED. This system can be applied not only to the spatial spectrum measurement of general OLED but also to the future research of spectral measurement of organic microcavity components, which is helpful for research in the organic laser.
關鍵字(中) ★ 即時多角度量測光譜儀
★ 有機發光二極體
★ 空間頻譜
關鍵字(英) ★ one-snap multi-angle spectroscopy optical system
★ organic light emitting diodes
★ spatial spectra
論文目次 中文摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 VIII
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
第二章 基本理論與計算 3
2.1即時量測系統理論 3
2.1.1 Afocal系統理論與計算 3
2.1.2凸透鏡成像公式 4
2.1.3 Blazed grating理論與計算 6
2.1.4 Lambertian光源的定義與計算 8
2.2有機發光二極體的基本理論與架構 9
第三章 實驗方法與架構 14
3.1有機元件製成與架構 14
3.2量測儀器與架構 18
3.3外部量子效率計算 27
第四章 結果與討論 29
4.1即時量測系統的架設目的 29
4.1.1量測系統架設的方法 29
4.2校準量測系統 35
4.2.1波長校正 39
4.2.2角度校正 40
4.3光強校正 42
4.4結果與討論 51
第五章 結論與未來展望 54
參考文獻 56
參考文獻 [1]C. Adachi, M. A. Baldo, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett. 77, 904 (2000).
[2]A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, IEEE J. Sel. Top. Quant. Electron 10, 1, (2004).
[3]J. S. Park, H. Chae, H. K. Chung, and S. I. Lee, Semicond. Sci. Technol. 26, 034001 (2011).
[4]K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev. 107, 1233-1271 (2007).
[5]B. Stender, S. F. Völker, C. Lambert, and J. Pflaum, Adv. Mater. 25, 2943-2947 (2013).
[6]Y. Seino, H. Sasabe, Y.J. Pu, and J. Kido, Adv. Mater. 26, 1612–1616 (2014).
[7]L. Li, J. Liu, Z. Yu, and Q. Pei, Appl. Phys. Lett. 98, 201110 (2011).
[8]Z.Y. Liu, S.R. Tseng, Y.C. Chao, C.Y. Chen, H.F. Meng, S.F. Horng, Y.H. Wu, and S.H. Chen, Synthetic Metals 161, 426–430 (2011).
[9]T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, ACS Appl. Mater. Interfaces 3, 410–416 (2011).
[10]S. Sax, N. R. Penkalla, A. Neuhold, S. Schuh, E. Zojer, E. J. W. List, and K. Mullen, Adv. Mater. 22, 2087–2091 (2010).
[11]E. Ahmed, T. Earmme, and S. A. Jenekhe, Adv. Funct. Mater. 21, 3889–3899 (2011).
[12]Q. Wang, Y. Tao, X. Qiao, J. Chen, D. Ma, C. Yang, and J. Qin, Adv. Funct. Mater. 21, 1681–1686 (2011).
[13]G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Appl. Phys. Lett. 91, 152111 (2007).
[14]J. Jang, and S. H. Han, Curr. Appl. Phys. 6, e17–e21 (2006).
[15]S. Chenais, and S. Forget, Polym. Int. 61, 390–406 (2012).
[16]T. Earmme, and S. A. Jenekhe, J. Mater. Chem. 22, 4660 (2012).
[17]L.M. Chen, Z. Xu, Z. Hong, and Y. Yang, J. Mater. Chem. 20, 2575–2598 (2010).
[18]J. Kim, S. H. Lim, and Y. S. Kim, J. Am. Chem. Soc. 132, 42 (2010).
[19]M. Ikai, and S. Tokito, Appl. Phys. Lett. 79, 2 (2001).
[20]N. Tessler, Adv. Mater. 11, 363 (1999).
[21]D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, Nature. 395, 53-55 (1998).
[22]D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, Phys. Rev. Lett. 82, 3316 (1999).
[23]R. J. Holmes, and S. R. Forrest, Phys. Rev. Lett. 93, 186404 (2004).
[24]L. G. Connolly, D. G. Lidzey, R. Butté, A. M. Adawi, D. M. Whittaker, M. S. Skolnick, and R. Airey, Appl. Phys. Lett. 83, 5377 (2003).
[25]T. Tani, Y. Yamaguchi, M. Saeki, M. Oda, and M. Vacha, J. Lumin. 102 –103 27-33 (2003).
[26]R.J. Holmes, and S.R. Forrest, Org. Electron. 8, 77 (2007).
[27]P. Mouroulis, and J. Macdonald, GEOMETRICAL OPTICS AND OPTICAL DESIGN (1997).
[28] Richardson Gratings, "Technical Note 11", section "Determination of the Blaze Wavelength" (30 September 2012).
[29]Richardson Gratings, "Technical Note 4 - Transmission Gratings", section "Blazed Transmission Gratings" (30 September 2012).
[30]C. C. Chang, M. T. Hsieh, J. F. Chen, S. W. Hwang, and C. H. Chen, Appl. Phys. Lett. 89, 253504 (2006).
[31]T. Matsushima, Y. Kinoshita, and H. Murata, Appl. Phys. Lett. 91, 253504 (2007).
[32]H. You, Y. Dai, Z. Zhang, and D. Ma, J. Appl. Phys. 101, 026105 (2007).
[33]J. Meyer, S. Hamwi, T. Bülow, H.-H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 113506 (2007).
[34]H. Lee, S.W. Cho, K. Han, P. E. Jeon, C. N. Whang, K. Jeong, K. Cho, and Y. Yi, Appl. Phys. Lett. 93, 043308 (2008).
[35]F. X. Wang, X. F. Qiao, T. Xiong, D. G. Ma, Org. Electron. 2008, 9, 985.
[36]M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, and A. Kahn, Appl. Phys. Lett. 95, 123301 (2009).
[37] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z.Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, J. Appl. Phys. 95, 3828 (2004).
[38]X. Zheng, Y. Wu, R. Sun, W. Zhu, X. Jiang, Z. Zhang, and S. Xu, Thin Solid Films 478, 252– 255 (2005).
[39]J. Huang, T. Watanabe, K. Ueno, and Y. Yang, Adv. Mater. 19, 739–743 (2007).
[40]L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiu, Appl. Phys. Lett. 92, 263301 (2008).
[41]K. Morii, T. Kawase, and S. Inoue, Appl. Phys. Lett. 92, 213304 (2008).
[42]S. H. Kim, J. Jang, and J. Y. Lee, Appl. Phys. Lett 90, 223505 (2007).
[43]S. J. Su, T. Chiba, T. Takeda, and J. Kido, Adv. Mater 20, 2125–2130 (2008).
[44]J. G. Simmons, Phys. Rev. Lett. 15, 967-968 (1965).
[45]P.R. Emtage, and J.J. O′Dwyer, Phys. Rev. Lett. 16, 356-358 (1966).
[46]P. Vacca, M. Petrosino, A. Guerra, R. Chierchia, C. Minarini, D. D. Sala, and A. Rubino, J. Phys. Chem. C 111, 17404-17408 (2007).
[47]R.H. Fowler, and L. Nordheim, Proc. R. Soc. (London), Ser. A, 119 (1928) 173.
[48]M. Lenzlinger, and E. H. Snow, J. Appl. Phys. 40, 278 (1969).
[49]J. Maserjian, and N. Zamani, J. Appl. Phys.53, 559 (1982).
[50]A.J. Heeger, I.D. Parker, and Y. Yang, Synth. Met.67, 23-29 (1994).
[51]G. G. Malliaras, J. R. Salem, P. J. Brock, and C. Scott, Phys. Rev. B. 58, 20 (1998).
[52]C.C. Yap, M. Yahaya, M.M. Salleh, Curr. Appl. Phys. 8, 637–644 (2008).
[53]E. Ahmed, T. Earmme, and S. A. Jenekhe, Adv. Funct. Mater. 21, 3889–3899 (2011).
[54]C. E. Small, S. W. Tsang, J. Kido, S. K. So, and F. So, Adv. Funct. Mater. 22, 3261–3266 (2012).
[55]P. C. Kao, J. Y. Wang, J. H. Lin, and C. H. Yang, Thin Solid Films 527, 338–343 (2013).
[56]J. F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, Adv. Funct. Mater. 20, 2825–2832 (2010).
[57]http://www.hamamatsu.com/us/en/product/category/3100/4001/4103/S1227-1010BQ/index.html
[58]D. Yokoyama, M. Moriwake, C. Adachi, and J. Appl. Phys.103, 123104 (2008).
[59]D. Yokoyama, H. Nakanotani, Y. Setoguchi, M. Moriwake, D. Ohnishi, M. Yahiro, and C. Adachi, Jpn. J. Appl. phys. 46, L826 (2007).
[60]J. F. Chang, Y. S. Huang, P. T. Chen, R. L. Kao, X. Y. Lai, C. C. Chen, and C. C. Lee, Opt. Exp, 23, 14695–14706 (2015).
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2016-11-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明