參考文獻 |
[1] 楊志明,組織工程,九州圖書,民國94年。
[2] Y. S. Nam and T. G. Park, “Porous Biodegradable Polymeric Scaffolds Prepared by Thermally Induced Phase Separation”, Journal of Biomedical Materials Research. Part A, Vol. 47, pp.8-17, 1999.
[3] A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacant and R. Langer, “Laminated Three-dimensional Biodegradable Foams for Use in Tissue Engineering”, Biomaterials, Vol. 14, pp.323-330, 1993.
[4] D. C. Sin, X. Miao, G. Liu, F. Wei, G. Chadwick, C. Yan and T. Friis, “Polyurethane (PU) Scaffolds Prepared by Solvent Casting/Particulate Leaching (SCPL) Combined with Centrifugation”, Materials Science and Engineering: C, Vol. 30, pp.78-85, 2010.
[5] 中國機械工程學會,3D列印 列印未來—從虛擬到實現,佳魁文化,民國102年。
[6] X. Yan and P. Gu, “A Review of Rapid Prototyping Technologies and Systems”, Computer-Aided Design, Vol. 28, pp.307-318, 1996.
[7] R. P. Lanza, R. Langer and J. Vacanti, Principles of Tissue Engineering, Edition, Academic Press, 2000.
[8] D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh and K. C. Tan, “Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling”, Journal of Biomedical Materials Research Part A, Vol. 55, pp.203-216, 2001.
[9] I. Zein, D. W. Hutmacher, K. C. Tan and S. H. Teoh, “Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications”, Biomaterials, Vol. 23, pp.1169-1185, 2002.
[10] S. H. Hsu, H. J. Yen, C. S. Tseng, C. S. Cheng and C. L. Tsai, “Evaluation of The Growth of Chondrocytes and Osteoblasts Seeded into Precision Scaffolds Fabricated by Fused Deposition Manufacturing”, Journal of Biomedical Materials Research, Vol. 80B, pp.519-527, 2007.
[11] H. J. Yen, S. H. Hsu, C. S. Tseng, J. P. Huang and C. L. Tsai, “Fabrication of Precision Scaffolds Using Liquid-frozen Deposition Manufacturing for Cartilage Tissue Engineering”, Tissue Engineering Part A, Vol. 15, pp.965-975, 2009.
[12] Z. Xiong, Y. Yan, S. Wang, R. Zhang and C. Zhang, “Fabrication of Porous Scaffolds for Bone Tissue Engineering via Low-temperature Deposition”, Scripta Materialia, Vol. 46, pp.771-776, 2002.
[13] L. Liu, Z. Xiong, Y. Yan, R. Zhang, X. Wang and L. Jin, “Multinozzle Low-temperature Deposition System for Construction of Gradient Tissue Engineering Scaffolds”, Journal of Biomedical Materials Research, Vol. 88B, pp.254-263, 2009.
[14] 黃仁波,「以冷凍式快速原型法製作組織工程支架」,國立中央大學,碩士論文,民國94年。
[15] 陳彥霖,「組織工程用三維支架之電腦輔助製程設計」,國立中央大學,碩士論文,民國96年。
[16] 蘇彥安,「組織工程用三維支架製程改善之研究」,國立中央大學,碩士論文,民國98年。
[17] C. B. Pham, K. F. Leong, T. C. Lim and K. S. Chian, “Rapid Freeze Prototyping Technique in Bio-plotters for Tissue Scaffold Fabrication”, Rapid Prototyping Journal, Vol. 14, pp.246-253, 2008.
[18] G. H. Kim, S. H. Ahn, H. Yoon, Y. Y. Kim and W. Chun, “A Cryogenic Direct-plotting System for Fabrication of 3D Collagen Scaffolds for Tissue Engineering”, Journal of Materials Chemistry, Vol. 19, pp.8817-8823, 2009.
[19] G. H. Kim, S. H. Ahn, Y. Y. Kim, Y. S. Cho and W. Chun, “Coaxial Structured Collagen-alginate Scaffolds: Fabrication, Physical Properties, and Biomedical Application for Skin Tissue Regeneration”, Journal of Materials Chemistry, Vol. 21, pp.6165-6172, 2011.
[20] N. D. Doiphode, T. Huang, M. C. Leu, M. N. Rahaman and D. E. Day, “Freeze Extrusion Fabrication of 13–93 Bioactive Glass Scaffolds for Bone Repair”, Journal of Materials Science: Materials in Medicine, Vol. 22, pp.515-523, 2011.
[21] W. Zhang, M. C. Leu, Z. Ji and Y. Yan, “Rapid Freezing Prototyping with Water”, Materials & Design, Vol. 20, pp.139-145, 1999.
[22] Q. Liu and M. C. Leu, “Finite Element Analysis of Solidification in Rapid Freeze Prototyping”, Journal of Manufacturing Science and Engineering, Vol. 129, pp.810-820, 2007.
[23] F. D. Bryant and M. C. Leu, “Modeling and experimental results of concentration with support material in rapid freeze prototyping”, Rapid Prototyping Journal, Vol. 15, pp.317-324, 2009.
[24] C. Y. Liu, Y. Li, L. Zhang, S. Mi, Y. Y. Xu and W. Sun, “Development of A Novel Low-temperature Deposition Machine Using Screw Extrusion to Fabricate Poly(L-lactide-co-glycolide) Acid Scaffolds”, Journal of Engineering in Medicine, Vol. 228, pp.593-606, 2014.
[25] M. S. Laia, D. R. Jorge and O. Neri, “Water-Based Robotic Fabrication: Large-Scale Additive Manufacturing of Functionally Graded Hydrogel Composites via Multichamber Extrusion”, 3D Printing and Additive Manufacturing, Vol. 1, pp.141-151, 2014.
[26] J. S. Lee, J. M. Hong, J. W. Jung, J. H. Shim, J. H. Oh and D. W. Cho, “3D Printing of Composite Tissue with Complex Shape Applied to Ear Regeneration”, Biofabrication, Vol. 6, pp.103-115, 2014.
[27] 林研聖,「冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究」,國立中央大學,碩士論文,民國104年。
[28] 杜方傑,「組織工程用冷凍成型製造系統之自動化製作流程開發」,國立中央大學,碩士論文,民國104年。
[29] C. H. Lin, J. M. Su and S. H. Hsu, “Evaluation of Type II Collagen Scaffolds Reinforced by Poly(ε-Caprolactone) as Tissue-engineered Trachea”, Tissue Engineering Part C: Methods, Vol. 14, pp.69-77, 2008.
[30] J. H. Park, J. M. Hong, Y. M. Ju, J. W. Jung, H. W. Kang, S. J. Lee, J. J. Yoo, S. W. Kim, S. H. Kim and D. W. Cho, “A Novel Tissue-engineered Trachea with A Mechanical Behavior Similar to Native Trachea”, Biomaterials, Vol. 62, pp.106-115, 2015.
[31] R. J. Morrison, S. J. Hollister, M. F. Niedner, M. G. Mahani, A. H. Park, D. K. Mehta, R. G. Ohye and G. E. Green, “Mitigation of Tracheobronchomalacia with 3D-printed Personalized Medical Devices in Pediatric Patients”, Science Translational Medicine, Vol. 7, pp. 285-296, 2015.
[32] G. H. Wu and S. H. Hsu, “Review: Polymeric-Based 3D Printing for Tissue Engineering”, Journal of Medical and Biological Engineering, Vol. 35, pp.285-292, 2015.
[33] B. Dhariwala, E. Hunt and T. Boland, “Rapid Prototyping of Tissue-engineering Constructs, Using Photopolymerizable Hydrogels and Stereolithography”, Tissue Engineering, Vol. 10, pp.1316-1322, 2004.
[34] C. Shuai, Z. Mao, H. Lu, Y. Nie, H. Hu and S. Peng, “Fabrication of Porous Polyvinyl Alcohol Scaffold for Bone Tissue Engineering Via Selective Laser Sintering”, Biofabrication, Vol. 5, 015014, 2013.
[35] R. P. Chhabra and J. F. Richardson, Non-Newtonian and Applied Rheology: Engineering Application, Edition, ELSEVIER, 2008.
[36] D. V. Boger, “Demonstration or Upper and Lower Newtonian Fluid Behavior in a Pseudoplastic Fluid”, Nature, Vol. 265, pp.126-128, 1977.
[37] J. Y. Kim, J. K. Park, S. K. Hahn, T. H. Kwon and D. W. Cho, “Development of The Flow Befavior Model for 3D Scaffold Fabrication in The Polymer Deposition Process by A Heating Method”, Journal of Micromechanics and Microengineering, Vol. 19, 105003, 2009.
[38] K. C. Hung, C. S. Tseng and S. H. Hsu, “Synthesis and 3D Priting of Biodegradable Polyurethane Elastomer by a Water-based Process for Cartilage Tissue Engineering Applications”, Advanve Healthcare Material, Vol. 3, pp1578-1587, 2014.
[39] S. H. Hsu, K. C. Hung, Y. Y. Lin, C. H. Su, H. Y. Yeh, U. S. Jeng, C. Y. Lu, S. A. Dai, W. E. Fu and J. C. Lin, “Water-based Synthesis and Processing of Novel Biodegradable Elastomers for Medical Applications”, Journal of Materials Chemistry B, Vol. 2, pp.5083-5092, 2014.
[40] D. L. Teagarden and D. S. Baker, “Practical Aspects of Lyophilization Using Non-aqueous Co-solvent Systems”, European Journal of Pharmaceutical Sciences, Vol. 15, pp.115-133, 2002.
[41] N. P. Cheremisinoff, Industrial Solvents Handbook, Edition, Marcel Dekker, 2003.
[42] K. Takaizumi, “A Curious Phenomenon in The Freezing-Thawing Process of Aqueous Ethanol Solution”, Journal of Solution Chemistry, Vol. 34, pp.597-612, 2005.
[43] H. Kumano, T. Asaoka, A. Saito and S. Okawa, “Study on Latent Heat of Fusion of Ice in Aqueous Solutions”, International Journal of Refrigeration, Vol. 30, pp.267-273, 2007.
[44] H. Seager, C. B. Taskis, M. Syrop and T. J. Tee, “Structure of Products Prepared by Freeze-drying Solutions Containing Organic Solvents”, PDA Journal of Pharmaceutical Science and Technology, Vol. 39, pp.161-179, 1985.
[45] 曾郁文,「雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究」,國立中央大學,碩士論文,民國102年。 |