博碩士論文 103323010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.149.213.209
姓名 林沐禾(Mu-Ho Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為
★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響
★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為
★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應
★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響
★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討★ 顆粒外形對顆粒體在滑坡道流動行為之影響及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究提出離散元素模型探討掉落體衝擊顆粒床的力學與運動行為,並以粒子影像測速技術 (PIV) 量測實驗中顆粒床的表面速度,並連同文獻的衝擊實驗結果,進行離散元素模型的驗證,驗證的物理量包含顆粒床表面速度場和掉落體的位置、速度、加速度、角速度與角加速度。本研究進一步透過驗證合理的離散元素模型,探討衝擊時顆粒床內部的物理性質。顆粒床的材質為三氧化二鋁,且分別使用三種不同的粒徑 (3mm、5mm及8mm)。研究結果顯示 : (1)顆粒床粒子體積佔有率受到衝擊的影響範圍僅限於掉落體周圍,但整個顆粒床的配位數與摩擦啟動因子皆有明顯的變化; (2)衝擊過程中,垂直方向應力的上升最為明顯; (3)接觸力的水平分佈為均向性,而垂直分佈為異向性; (4)衝擊時顆粒床內的摩擦啟動因子明顯上升; (5)衝擊時顆粒間的正向與切向接觸力分佈皆快速上升,但顆粒與牆壁間接觸力分佈無明顯變化; (6)衝擊時引發的縱波與橫波波速與顆粒床粒徑有關,且顆粒床的孔隙率也會影響縱波波速,而縱波與橫波間波速變化呈一線性比例。
摘要(英) The aim of the study is to investigate the mechanical and motion behavior of a projectile vertically impacting into a cylindrical granular bed experimentally and numerically. The surface velocity distribution of granular bed was measured by particle image velocimetry technique (PIV). This study proposed a discrete element model to simulate this granular system and this DEM model was validated against the experimental data in the literature. The compared physical quantities include the penetration depth, translational and angular velocities, and translational and angular acceleration of the projectile as well as the surface velocity distribution of granular bed. The validated DEM model is then used to explore the internal physical properties of the granular system. The main research findings are as follows : (1) The solid fraction of the granular bed is partially influenced during the impacting process, especially in the region around the projectile, but the coordination number and the mobilized friction are influenced in the whole granular bed; (2) The vertical normal stress is dominated during the impacting process; (3) The contact force shows isotropic distribution in the horizontal plane, while the contact force distribution in the vertical plane was anisotropic; (4) The impact of a projectile on the granular bed greatly makes friction factor mobilized; (5) Normal and tangential contact force distributions for the inter-particle contact greatly change during the impact process, but those for particle-wall has no significant change; (6) The velocity of pressure wave depends upon the particle size and granular porosity, whereas the shear wave is related to only the particle size. The ratio of the pressure wave velocity to the shear wave velocity is found to be constant.
關鍵字(中) ★ 顆粒物質
★ 衝擊實驗
★ 離散元素法
★ 粒子影像測速技術
★ 內部性質
關鍵字(英) ★ granular matter
★ impact test
★ discrete element method
★ particle image velocimetry
★ internal properties
論文目次 摘要 i
Abstract ii
目錄: iii
表格目錄: v
圖片目錄: v
第一章 緒論 1
1.1 顆粒體 1
1.2 顆粒體的衝擊模型 1
1.3 離散元素法 4
1.4 研究動機 5
1.5 研究架構 6
第二章 研究方法 7
2.1 離散元素法 7
2.1.1 離散元素法理論 7
2.1.1.1 三維剛體運動方程式(three dimensional equations of a rigid body) 7
2.1.1.2 接觸力模型(contact force model) 9
2.1.1.3 顯示積分法(explicit integration method) 11
2.1.2 離散元素法建模 12
2.1.3 DEM輸入參數決定 12
2.1.3.1 三點滑動摩擦試驗 12
2.1.3.2 安息角試驗 13
2.1.3.3 掉落試驗 13
2.2 表面顆粒體速度量測方法 13
2.2.1 粒子影像測速技術 14
2.3 內部性質 14
2.3.1 顆粒粒子體積佔有率 15
2.3.2 配位數 15
2.3.3 應力 15
2.3.4 啟動摩擦因子 18
2.3.5 接觸力分佈函數 18
第三章 結果與討論 19
3.1 衝擊實驗與模擬的運動狀態比較 19
3.2 內部性質 22
第四章 結論 28
參考文獻 30
參考文獻 1. H.J. Herrmann, “Granular Matter” Physica A, Vol.313,pp.188-210 (2002)
2. P.A. Cundall, O.D. LStrack, Discrete numerical-model for granular assemblies, Geotechnique 29, No.1, 47-65 (1979)
3. M. Hou, Z. Peng, R. Liu, Projectile impact and penetration in loose granular bed, Science and Technology of Advanced Materials 6, 855-859 (2005)
4. K.A. Newhall and D.J. Durian, Projectile shape dependence of impact craters in loose granular media, Physical Review E 68, 060301 (2003)
5. J.R. de Bruyn, A.M. Walsh, Penetration of spheres into loose granular media, Can. J. Phys. 82, 439-446 (2004)
6. E.L. Nelson, H. Katsuragi, P, Mayor, Projectile interaction in granular impact cratering, Physical Review Letters 101, 068001 (2008)
7. J.S. Uehara, M.A. Ambroso, R.P. Ojha, Low-speed impact craters in loose granular media, Physical Review Letters 90, 194301 (2003)
8. M.A. Ambroso, C.R. Santore, A.R. Abate, Penetration depth for shallow impact cratering, Physical review E 71, 051305 (2005)
9. M. Hou, Z. Peng, R. Liu, Dynamics of a projectile penetrating in granular systems, Physical review E 72, 062301 (2005)
10. M.A. Ambroso, R.D. Kamien, D.J. Durian, Dynamics of shallow impact cratering, Physical review E 72, 041305 (2005)
11. D. Lohse, R. Bergmann, R. Mikkelsen, Impact on soft sand: void collapse and jet formation, Physical Review Letters 93, 198003 (2004)
12. Y. Boguslavskii, S. Drabkin, A. Salman, Analysis of vertical projectile penetration in granular soils, J. Phys. D: Appl. Phys. 29, 905-916 (1996)
13. L.S. Tsimring & D. Volfson, Modeling of impact cratering in granular media, Powders and Grains 2005, edited by R. Garc´ıa-Rojo, H. J. Herrmann, and S. McNamara, vol. 2, pp. 1215–1223 (2005)
14. M.P. Ciamarra, A.H. Lara, A.T. Lee, Dynamic of drag and force distributions for projectile impact in a granular medium, Physical Review Letters 92, 194301 (2004)
15. K. Wada, H. Senshu, T. Matsui, Numerical simulation of impact cratering on granular material, Icarus 180, 528-545 (2006)
16. M. Nishida, K. Tanaka, Y. Matsumoto, Discrete element method simulation of the restitutive characteristics of a steel spherical projectile form a particulate aggregation, JSME International journal: Series A, Vol. 47, 438-447 (2004)
17. A.K. Prasad, Particle image velocimetry, Current Science Vol 79, 51-60 (2000)
18. R.J. Adrian, Twenty years of particle image velocimetry, Experiments in Fluids 39, 159-169 (2005)
19. N.J. Lawson, J. Wu, Three-dimensional particle iamge velocimetry: experimental error analysis of a digital angular stereoscopic system, Meas. Sci. Technol. 8, 1455-1464 (1997)
20. A.K. Prasad, Stereoscopic particle image velocimetry, Experiments in Fluids 29, 103-116 (2000)
21. S.M. Soloff, R.J. Adrian, Z-C. Liu, Distortion compensation for generalized stereoscopic particle image velocimetry, Meas. Sci. Technol. 8, 1441-1454 (1997)
22. M. Nishida, Y. Tanaka, DEM simulations and experiments for projectile impacting two-dimensional particle packing including dissimilar material layers, Granular Matter12, 357-368 (2010)
23. M. Nishida, J. Nagamatsu, K. Tanaka, Discrete element method analysis of ejection and penetration of projectile impacting granular media, Journal of solid mechanics and materials engineering Vol. 5, 164-178 (2011)
24. Y. Li, A. Dove, J.S. Curtis, J.E.Colwell, 3D DEM simulations and experiment exploring low-velocity projectile impacts into a granular bed, Powder technology 288, 303-314 (2016)
25. 廖原廷,「掉落體衝擊不同材質與形狀顆粒床之運動及力學行為」,國立中央大學,碩士論文,民國105。
26. Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical-simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technology 71, 239-250 (1992)
27. R.G. Andrews, J.D.L. White, T. Durig et al, Discrete blast in granular material yield two-stage process of cavitation and granular fountaining, Geophysical research letters Vol. 41,1-6 (2014)
28. C. O’Sullivan, J.D. Bray, Selecting a suitable time step for discrete element simulation that use the central difference time integration scheme, Engineering Computations 21, 278-303 (2004)
29. Y.C. Chung, H.H. Liao, S.S. Hsiau, Convection behaviour of non-spherical particles in a vibrating bed discrete element modelling and experimental validation, Powder Technology 237, 53-66 (2013)
30. F.P. Va´zquez,G.A.C. Robledo, J.M.S.Altamirano, A.J.B. Leyva, J.C.R. Sua´rez, Infinite Penetration of a Projectile into a Granular Medium, Physical Review Letters 106, 218001 (2011)
31. D.I.Goldman, P.Umbanhowar, Scaling and dynamics of sphere and disk impact into granular media, Physical Review E 77, 021308 (2008).
32. Y.Xu, J.T.Padding, M.A.vanderHoef, J.A.M.Kuipers, Detailed numerical simulation of an intruder impacting on a granular bed using a hybrid discrete particle and immersed boundary (DP-IB) method, Chemical Engineering Science104, 201–207 (2013)
33. F.Bourrier, F.Nicot, F.Darve, Physical processes within a 2D granular layer during an impact, Granular Matter 10, 415–437 (2008)
34. C. Thornton, “Force Transmission in Granular Media”, KONA Power and Particle Journal Volume 15, 81-90 (1997)
35. C. Goldenberg, I. Goldhirsch, Force chains, microelasticity, and macroelasticity, Physical Review Letters Volume 89, 084302 (2002)
36. J. Geng, D. Howell, E. Longhi, E. Clement, “Footprints in sand: The response of a granular material to local perturbations”, Physical Review Letter Volume 87, 035506 (2001)
37. Y. C. Chung, C. K. Lin, J. Ai, Mechanical behaviour of a granular solid and its contacting deformable structure under uni-axial compression-Part II: Multi-scale exploration of internal physical properties, Chemical Engineering Science 144, 421-443 (2016)
38. C.O’Sullivan, L.Cui, Micromechanics of granular material response during load reversals: combined DEM and experimental study, Powder Technology 193, 289-302 (2009)
39. M. Ojha and K. Sain, Velocity-Porosity and Velocity-Density Relationship for Shallow Sediments in the Kerala-Konkan Basin of Western Indian Margin, Journal Geological Society of India Volume 84, 187-191 (2014)
40. M.N. Toksöz, C.H. Cheng, A. Timur, Velocities of seismic waves in porous rocks, Geophysic Volume 41, 621-645 (1976)
41. J.P. Castagna, M.L. Batzle, R.L. Eastwood, Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks, Geophysics Volume 50, 571-581 (1985)
42. Z. Hossain, T. Mukerji , I.L. Fabricius, Vp-Vs relationship and amplitude variation with offset modelling of glauconitic greensand, Geophysical Prospecting 60, 117-137 (2012)
43. M.A. Knackstedt, C.H. Arns, W. Val Pinczewski, Velocity–porosity relationships: Predictive velocity model for cemented sands composed of multiple mineral phases, Geophysical Prospecting 53, 349-372 (2005)
44. S.Luding, Cohesive, frictional powders: contact models for tension, Granular Matter 10, 235–246 (2008)
45. http://www.matweb.com/
指導教授 鍾雲吉(Y.C. Chung) 審核日期 2016-12-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明