博碩士論文 103322086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.15.221.67
姓名 劉冠廷(Kuan-Ting Liu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 結合多種遙測衛星數據觀測湄公河水資源變化
(Integration of Multi-satellite Measurements to Quantify the Temporal Changes of the Mekong River)
相關論文
★ 利用多時期之衛星影像改進孟加拉地區之地表水量化★ 利用ALOS SAR影像觀測2008當雄地震同震及震後形變量
★ 利用衛星影像觀測2004年印度洋地震震後之海岸地形垂直變化★ 利用綜合遙測資訊建置之高程模型觀測近岸地形時序變遷
★ 整合Sentinel-1與TerraSAR-X 永久散射體雷達差干涉法以監測地表變形★ 利用區域電離層模式校正Sentinel-1差分干涉以偵測臺灣地表變形
★ 利用衛星影像間接建立全台海岸地形模型★ 應用Sentinel-1衛星TOPS合成孔徑雷達及最小基線長分析技術監測越南河內的地層下陷
★ Sentinel-1 Radar Interferometry Decomposes Land Subsidence in Taiwan★ 以自相似算法進行衛星影像融合和水線判釋
★ 基於卷積神經網路於光學衛星影像進行跨衛星之雲偵測★ 利用衛星遙測資訊於稻米產量預測
★ 利用ICESat-2及Sentinel-2反演南海近岸水深★ 利用行動測深系統產製淺水區深度模型
★ 以多元衛星影像監測青藏高原湖泊長期水量變化★ 使用動態門檻值選取對衛星影像進行非監督式變遷偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 水體的水位、水量資訊對於水資源管理分析是極為重要的指標,兩者變化可用於分析氣候變遷、人工建設對水體造成的影響。這些資訊傳統上需要在當地設立水文站,以取得連續且即時的觀測值。然而對於偏遠地區的水體,設置水文測站需要耗費大量時間與金錢,是不切實際的做法。本次研究區位於湄公河流域,由於水力發電的需求,東南亞各國在湄公河流域中建設了超過20個水壩。其中上游水壩的水位及水量變化資訊並沒有公開,且下游水文站亦只提供近幾年的資料。有當地報導指出上游水壩的興建可能造成下游地區乾旱加劇,因此在湄公河流域中需要一種針對流域尺度且持續的監測方法,以面對未來氣候變遷觀測需求。本研究使用衛載感測器對上游小灣壩、景洪壩與下游四個檢查點進行觀測,分析水壩蓄水是否確實造成下游水資源的變化。使用資料包括兩個雷達測高衛星(Envisat與Jason-2)、雷射測高衛星ICESat數據、Landsat-5/-7/-8光學衛星以及Sentinel-1A合成孔徑雷達影像。方法中針對光學衛星影像計算各研究區改良常態差異水體指標,由雷達/光學影像中萃取出水面積資訊,並與對應時間測高數據水位觀測值結合。藉由線性回歸求得水面積-水位之間的轉換關係。便可將所有水面積觀測值轉換為水位,並以此方式加密、延長水位觀測時間序列。另一方面,可將水面積套疊至水壩蓄水前建立的數值高程模型上,使用積分求得影像拍攝時的水壩蓄水量。同樣進行線性回歸,求得水面積-水量之間的轉換方程式。本研究方法於上游水壩觀測水位的誤差約為2-5公尺,觀測水量的誤差約百分之三。檢查點水位測量精度可達1公尺,由這些點位的水位變化可以發現水壩蓄水後濕季水位有下降趨勢(約0.32±0.14公尺/年),乾季水位則呈現上升趨勢(約0.18±0.08公尺/年)。此現象符合前人文獻所分析的結論,應為水庫調節水流所造成。
摘要(英) Water level (WL) and water volume (WV) of surface-water bodies are among the most crucial variables used in water-resources assessment and management. They fluctuate as a result of climatic forcing, and they are considered as indicators of climatic impacts on water resources. Quantifying riverine WL and WV, however, usually requires the availability of timely and continuous in-situ data, which could be a challenge for rivers in remote regions, including the Mekong River basin. As one of the most developed rivers in the world, with more than 20 dams built or under construction, Mekong River is in need of a monitoring system that could facilitate basin-scale management of water resources facing future climate change. This study used spaceborne sensors to investigate two dams in the upper Mekong River, Xiaowan and Jinghong Dams within China, to examine river flow dynamics after these dams became operational. We integrated multi-mission satellite radar altimetry (RA, Envisat and Jason-2), satellite laser altimetry ICESat, Landsat-5/-7/-8 Thematic Mapper (TM)/Enhanced Thematic Mapper plus (ETM+)/Operational Land Imager (OLI) optical and Sentinel-1A synthetic aperture radar (SAR) remote sensing (RS) imageries to construct composite WL time series with enhanced spatial resolutions and substantially extended WL data records. An empirical relationship between altimetry WL and water extent was first established for each dam and 6 checkpoints, and then the combined long-term WL time series from Landsat/Sentinel-1A images are reconstructed for all study sites. The R2 between altimetry WL and Landsat water area measurements is >0.9. Next, the Tropical Rainfall Measuring Mission (TRMM) data were used to diagnose and determine water variation caused by the precipitation anomaly within the basin. Finally, the impact of hydrologic dynamics caused by the impoundment of the dams is assessed. The discrepancy between satellite-derived WL and available in-situ gauge data, in term of root-mean-square error (RMSE) is at 2–5 m level at upstream dams, and 1 m at downstream checkpoints. Estimated WV variations derived from combined RA, RS imageries and shuttle radar topography mission (SRTM) data are consistent with results from in-situ data with a difference at about 3%. We concluded that the river level downstream is affected by a combined operation of these two dams after 2009, which has increased WL by 0.18±0.08 m‧yr-1 in dry seasons and decreased WL by 0.32±0.14 m‧yr-1 in wet seasons.
關鍵字(中) ★ 湄公河
★ 水位
★ 衛星雷達測高
★ 光學遙測影像
★ 合成孔徑雷達
關鍵字(英) ★ Mekong River
★ water level
★ satellite radar altimetry
★ optical satellite images
★ SAR
論文目次 摘要 iii
Abstract iv
致謝 vi
Table of Contents vii
List of Figures and Illustrations ix
List of Tables xi
1. Introduction 1
1.1 Background 1
1.2 Objective 6
1.3 Architecture 7
2. Related Work 8
2.1. Impacts of dam construction at upper MR 8
2.2. Apply satellite RA/LA to inland waterbody observation 9
2.3. Extract WA from optical and SAR imageries 11
2.4. Combine milti-satellite data to monitor inland waterbody 12
3. Study area 15
3.1. Mekong watershed 15
3.2. Dams located at the upper MR 19
3.3. Downstream checkpoints 26
4. Data and Methodology 27
4.1. Satellite Radar Altimetry 29
4.2. Satellite Laser Altimetry 36
4.3. Optical Remote Sensing Imageries 40
4.4. Synthetic Aperture Radar (SAR) images 46
4.5. Digital Elevation Model (DEM) 51
4.6. Precipitation Record 52
4.7. Relationship between Water Level, Water Area and Water Volume 54
5. Results 58
5.1. Time Series from Multiple Sensors 58
5.2. Validation at Xiaowan Dam 65
5.3. Validation at Jinghong Dam 66
5.4. Validation at downstream checkpoints 67
5.4. Impact of Downstream Hydrologic Schemes 69
6. Discussions and Future Work 73
7. Conclusions 75
References 77

參考文獻 1. Rigby, J. Dams, drought and disaster along the mekong river. IRIN-The inside story on emergencies 2016.
2. Yongrit, R. Worst drought in decades disrupts life in southeast asia′s mekong region. NBC NEWS 2016.
3. Chau, J.B.D.P.M.N. Drought killing vietnam rice crops compounds mekong water crisis. Bloomberg 2016.
4. Mekong river commission. http://www.mrcmekong.org/
5. Rasanen, T.A.; Koponen, J.; Lauri, H.; Kummu, M. Downstream hydrological impacts of hydropower development in the upper mekong basin. Water Resources Management 2012, 26, 3495-3513.
6. Network, I.R. China’s upper mekong dams endanger millions downstream. Briefing paper 2002, 3.
7. Roberts, T. Downstream ecological implications of china’s lancang hydropower and mekong navigation project. International Rivers Network (IRN), http://www. irn. org 2001.
8. Zhao, Q.; Liu, S.; Deng, L.; Dong, S.; Yang, Z.; Liu, Q. Determining the influencing distance of dam construction and reservoir impoundment on land use: A case study of manwan dam, lancang river. Ecological engineering 2013, 53, 235-242.
9. Lu, X.; Li, S.; Kummu, M.; Padawangi, R.; Wang, J. Observed changes in the water flow at chiang saen in the lower mekong: Impacts of chinese dams? Quaternary International 2014, 336, 145-157.
10. Fu, L.-L.; Smith, R.D. Global ocean circulation from satellite altimetry and high-resolution computer simulation. Bulletin of the American Meteorological Society 1996, 77, 2625-2636.
11. Siegel, D.A.; McGillicuddy, D.J.; Fields, E.A. Mesoscale eddies, satellite altimetry, and new production in the sargasso sea. Journal of Geophysical Research: Oceans 1999, 104, 13359-13379.
12. Shaw, P.-T.; Chao, S.-Y.; Fu, L.-L. Sea surface height variations in the south china sea from satellite altimetry. Oceanologica Acta 1999, 22, 1-17.
13. Berry, P.; Garlick, J.; Freeman, J.; Mathers, E. Global inland water monitoring from multi?mission altimetry. Geophysical Research Letters 2005, 32.
14. Frappart, F.; Calmant, S.; Cauhope, M.; Seyler, F.; Cazenave, A. Preliminary results of envisat ra-2-derived water levels validation over the amazon basin. Remote sensing of Environment 2006, 100, 252-264.
15. Deng, X.; Featherstone, W. A coastal retracking system for satellite radar altimeter waveforms: Application to ers?2 around australia. Journal of Geophysical Research: Oceans 2006, 111.
16. Legresy, B.; Papa, F.; Remy, F.; Vinay, G.; van den Bosch, M.; Zanife, O.-Z. Envisat radar altimeter measurements over continental surfaces and ice caps using the ice-2 retracking algorithm. Remote Sensing of Environment 2005, 95, 150-163.
17. Liu, G.; Schwartz, F.W.; Tseng, K.H.; Shum, C. Discharge and water?depth estimates for ungauged rivers: Combining hydrologic, hydraulic, and inverse modeling with stage and water?area measurements from satellites. Water Resources Research 2015, 51, 6017-6035.
18. Michailovsky, C.; McEnnis, S.; Berry, P.; Smith, R.; Bauer-Gottwein, P. River monitoring from satellite radar altimetry in the zambezi river basin. Hydrology and Earth System Sciences 2012, 16, 2181-2192.
19. Kuo, C.-Y.; Kao, H.-C. Retracked jason-2 altimetry over small water bodies: Case study of bajhang river, taiwan. Marine Geodesy 2011, 34, 382-392.
20. Birkinshaw, S.; O′Donnell, G.; Moore, P.; Kilsby, C.; Fowler, H.; Berry, P. Using satellite altimetry data to augment flow estimation techniques on the mekong river. Hydrological Processes 2010, 24, 3811-3825.
21. Xu, H. Modification of normalised difference water index (ndwi) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing 2006, 27, 3025-3033.
22. Hostache, R.; Matgen, P.; Schumann, G.; Puech, C.; Hoffmann, L.; Pfister, L. Water level estimation and reduction of hydraulic model calibration uncertainties using satellite sar images of floods. IEEE Transactions on Geoscience and Remote Sensing 2009, 47, 431-441.
23. Collischonn, B.; Collischonn, W.; Tucci, C.E.M. Daily hydrological modeling in the amazon basin using trmm rainfall estimates. Journal of Hydrology 2008, 360, 207-216.
24. International rivers. https://www.internationalrivers.org/
25. Van der Veen, C. Interpretation of short-term ice-sheet elevation changes inferred from satellite altimetry. Climatic Change 1993, 23, 383-405.
26. Ekholm, S.; Forsberg, R.; Brozena, J.M. Accuracy of satellite altimeter elevations over the greenland ice sheet. Journal of Geophysical Research: Oceans 1995, 100, 2687-2696.
27. Kouraev, A.V.; Semovski, S.V.; Shimaraev, M.N.; Mognard, N.M.; Legresy, B.; Remy, F. Observations of lake baikal ice from satellite altimetry and radiometry. Remote Sensing of Environment 2007, 108, 240-253.
28. Ridley, J.; Partington, K. A model of satellite radar altimeter return from ice sheets. Remote Sensing 1988, 9, 601-624.
29. Lee, H.; Shum, C.; Tseng, K.-H.; Huang, Z.; Sohn, H.-G. Elevation changes of bering glacier system, alaska, from 1992 to 2010, observed by satellite radar altimetry. Remote Sensing of Environment 2013, 132, 40-48.
30. Lee, H.; Shum, C.; Yi, Y.; Braun, A.; Kuo, C.-Y. Laurentia crustal motion observed using topex/poseidon radar altimetry over land. Journal of Geodynamics 2008, 46, 182-193.
31. Kuo, C.-Y.; Cheng, Y.-J.; Lan, W.-H.; Kao, H.-C. Monitoring vertical land motions in southwestern taiwan with retracked topex/poseidon and jason-2 satellite altimetry. Remote Sensing 2015, 7, 3808-3825.
32. de Oliveira Campos, I.; Mercier, F.; Maheu, C.; Cochonneau, G.; Kosuth, P.; Blitzkow, D.; Cazenave, A. Temporal variations of river basin waters from topex/poseidon satellite altimetry. Application to the amazon basin. Comptes Rendus de l′Academie des Sciences-Series IIA-Earth and Planetary Science 2001, 333, 633-643.
33. Wang, X.; Gong, P.; Zhao, Y.; Xu, Y.; Cheng, X.; Niu, Z.; Luo, Z.; Huang, H.; Sun, F.; Li, X. Water-level changes in china′s large lakes determined from icesat/glas data. Remote Sensing of Environment 2013, 132, 131-144.
34. Phan, V.H.; Lindenbergh, R.; Menenti, M. Icesat derived elevation changes of tibetan lakes between 2003 and 2009. International Journal of Applied Earth Observation and Geoinformation 2012, 17, 12-22.
35. McFeeters, S.K. The use of the normalized difference water index (ndwi) in the delineation of open water features. International journal of remote sensing 1996, 17, 1425-1432.
36. Duan, Z.; Bastiaanssen, W. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment 2013, 134, 403-416.
37. Abileah, R.; Vignudelli, S.; Scozzari, A. A completely remote sensing approach to monitoring reservoirs water volume. Int. Water Technol. J 2011, 1, 63-77.
38. Frappart, F.; Do Minh, K.; L′Hermitte, J.; Cazenave, A.; Ramillien, G.; Le Toan, T.; Mognard-Campbell, N. Water volume change in the lower mekong from satellite altimetry and imagery data. Geophysical Journal International 2006, 167, 570-584.
39. Tseng, K.-H.; Chang, C.-P.; Shum, C.; Kuo, C.-Y.; Liu, K.-T.; Shang, K.; Jia, Y.; Sun, J. Quantifying freshwater mass balance in the central tibetan plateau by integrating satellite remote sensing, altimetry, and gravimetry. Remote Sensing 2016, 8, 441.
40. Kite, G. Modelling the mekong: Hydrological simulation for environmental impact studies. Journal of Hydrology 2001, 253, 1-13.
41. The gmt home page. http://www.soest.hawaii.edu/gmt/
42. Wessel, P.; Smith, W.H. Free software helps map and display data. Eos, Transactions American Geophysical Union 1991, 72, 441-446.
43. Commission, M.R. Strategic environmental assessment of hydropower on the mekong mainstream. Prepared by the International Centre for Environmental Management. Vientiane: 2010.
44. Stone, R. Severe drought puts spotlight on chinese dams. Science 2010, 327, 1311-1311.
45. King, P.; Bird, J.; Haas, L. The current status of environmental criteria for hydropower development in the mekong region: A literature compilation. Citeseer: 2007.
46. Hansson, S.; Hellberg, S.; Ojendal, J. Politics and development in a transboundary watershed: The case of the lower mekong basin. In Politics and development in a transboundary watershed, Springer: 2011; pp 1-18.
47. Tiezzi, S. Facing mekong drought, china to release water from yunnan dam. The Diplomat 2016.
48. Fan, H.; He, D.; Wang, H. Environmental consequences of damming the mainstream lancang-mekong river: A review. Earth-Science Reviews 2015, 146, 77-91.
49. Liu, K.-T.; Tseng, K.-H.; Shum, C.; Liu, C.-Y.; Kuo, C.-Y.; Liu, G.; Jia, Y.; Shang, K. Assessment of the impact of reservoirs in the upper mekong river using satellite radar altimetry and remote sensing imageries. Remote Sensing 2016, 8, 367.
50. Pulses and waveforms. http://www.aviso.altimetry.fr/en/techniques/altimetry/principle/pulses-and-waveforms.html (12/17),
51. Connor, L.N.; Laxon, S.W.; Ridout, A.L.; Krabill, W.B.; McAdoo, D.C. Comparison of envisat radar and airborne laser altimeter measurements over arctic sea ice. Remote Sensing of Environment 2009, 113, 563-570.
52. Durrant, T.H.; Greenslade, D.J.; Simmonds, I. Validation of jason-1 and envisat remotely sensed wave heights. Journal of Atmospheric and Oceanic Technology 2009, 26, 123-134.
53. Uebbing, B.; Kusche, J.; Forootan, E. Waveform retracking for improving level estimations from topex/poseidon, jason-1, and jason-2 altimetry observations over african lakes. IEEE Transactions on Geoscience and Remote Sensing 2015, 53, 2211-2224.
54. Tseng, K.-H.; Shum, C.; Yi, Y.; Emery, W.J.; Kuo, C.-Y.; Lee, H.; Wang, H. The improved retrieval of coastal sea surface heights by retracking modified radar altimetry waveforms. IEEE Transactions on Geoscience and Remote Sensing 2014, 52, 991-1001.
55. Lee-Lueng, F.; Cazenave, A. Satellite altimetry and earth sciences: A handbook of techniques and applications. International Geophisics Series. San Diego: Academic 2001, 69.
56. Brown, G. The average impulse response of a rough surface and its applications. IEEE transactions on antennas and propagation 1977, 25, 67-74.
57. Zelli, C.; Aerospazio, A. Envisat ra-2 advanced radar altimeter: Instrument design and pre-launch performance assessment review. Acta astronautica 1999, 44, 323-333.
58. Bamber, J. Ice sheet altimeter processing scheme. International Journal of Remote Sensing 1994, 15, 925-938.
59. Wingham, D.; Rapley, C.; Griffiths, H. In New techniques in satellite altimeter tracking systems, ESA Proceedings of the 1986 International Geoscience and Remote Sensing Symposium(IGARSS′86) on Remote Sensing: Today′s Solutions for Tomorrow′s Information Needs, 1986.
60. Legresy, B.; Remy, F. Surface characteristics of the antarctic ice sheet and altimetric observations. J. of Glacio 1997, 43, 265-275.
61. Laxon, S. Sea ice altimeter processing scheme at the eodc. International Journal of Remote Sensing 1994, 15, 915-924.
62. Khaki, M.; Forootan, E.; Sharifi, M. Satellite radar altimetry waveform retracking over the caspian sea. International Journal of Remote Sensing 2014, 35, 6329-6356.
63. Guo, J.; Chang, X.; Gao, Y.; Sun, J.; Hwang, C. Lake level variations monitored with satellite altimetry waveform retracking. IEEE journal of selected topics in applied earth observations and remote sensing 2009, 2, 80-86.
64. Lee, H.; Shum, C.; Tseng, K.-H.; Guo, J.-Y.; Kuo, C.-Y. Present-day lake level variation from envisat altimetry over the northeastern qinghai-tibetan plateau: Links with precipitation and temperature. Terrestrial, Atmospheric and Oceanic Sciences 2011, 22, 169-175.
65. Birkett, C.M.; Beckley, B. Investigating the performance of the jason-2/ostm radar altimeter over lakes and reservoirs. Marine Geodesy 2010, 33, 204-238.
66. Dumont, J.; Rosmorduc, V.; Picot, N.; Desai, S.; Bonekamp, H.; Figa, J.; Lillibridge, J.; Scharroo, R. Ostm/jason-2 products handbook. CNES: SALP-MU-M-OP-15815-CN, EUMETSAT: EUM/OPS-JAS/MAN/08/0041, JPL: OSTM-29-1237, NOAA/NESDIS: Polar Series/OSTM J 2009, 400.
67. Resti, A.; Benveniste, J.; Roca, M.; Levrini, G.; Johannessen, J. The envisat radar altimeter system (ra-2). ESA bulletin 1999, 98.
68. Abshire, J.B.; Sun, X.; Riris, H.; Sirota, J.M.; McGarry, J.F.; Palm, S.; Yi, D.; Liiva, P. Geoscience laser altimeter system (glas) on the icesat mission: On?orbit measurement performance. Geophysical Research Letters 2005, 32.
69. Kichak, R. Independent glas anomaly review board executive summary. Goddard Space Flight Center, Greenbelt, Maryland, USA, ICESat Website: http://icesat. gsfc. nasa. gov/docs/IGARB. pdf 2003, 11.
70. Nasa-developed earth observing system (eos) clearing house (echo). http://reverb.echo.nasa.gov/reverb/
71. Pietroniro, A.; Prowse, T.; Peters, D. Hydrologic assessment of an inland freshwater delta using multi?temporal satellite remote sensing. Hydrological Processes 1999, 13, 2483-2498.
72. Xu, H. Extraction of urban built-up land features from landsat imagery using a thematicoriented index combination technique. Photogrammetric Engineering & Remote Sensing 2007, 73, 1381-1391.
73. Ko, B.C.; Kim, H.H.; Nam, J.Y. Classification of potential water bodies using landsat 8 oli and a combination of two boosted random forest classifiers. Sensors 2015, 15, 13763-13777.
74. Earthexplorer. http://earthexplorer.usgs.gov/
75. Storey, J.; Scaramuzza, P.; Schmidt, G.; Barsi, J. In Landsat 7 scan line corrector-off gap filled product development, Proceedings of Pecora, 2005; pp 23-27.
76. Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for landsat mss, tm, etm+, and eo-1 ali sensors. Remote sensing of environment 2009, 113, 893-903.
77. Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using landsat tm data: When and how to correct atmospheric effects? Remote sensing of Environment 2001, 75, 230-244.
78. Using the usgs landsat 8 product. http://landsat.usgs.gov/Landsat8_Using_Product.php
79. Rundquist, D.C.; Lawson, M.P.; Queen, L.P.; Cerveny, R.S. The relationship between summer?season rainfall events and lake?surface area1. JAWRA Journal of the American Water Resources Association 1987, 23, 493-508.
80. Asf′s data portal. https://vertex.daac.asf.alaska.edu/
81. Sentinel-1 toolbox. https://sentinel.esa.int/web/sentinel/toolboxes/sentinel-1/tutorials
82. Lee, J.-S. Digital image enhancement and noise filtering by use of local statistics. IEEE transactions on pattern analysis and machine intelligence 1980, 165-168.
83. Van Zyl, J.J. The shuttle radar topography mission (srtm): A breakthrough in remote sensing of topography. Acta Astronautica 2001, 48, 559-565.
84. Fujita, K.; Suzuki, R.; Nuimura, T.; Sakai, A. Performance of aster and srtm dems, and their potential for assessing glacial lakes in the lunana region, bhutan himalaya. Journal of Glaciology 2008, 54, 220-228.
85. Sorooshian, S.; Hsu, K.-L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of persiann system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society 2000, 81, 2035-2046.
86. Liu, C.-Y.; Liu, G.-R.; Lin, T.-H.; Liu, C.-C.; Ren, H.; Young, C.-C. Using surface stations to improve sounding retrievals from hyperspectral infrared instruments. IEEE Transactions on Geoscience and Remote Sensing 2014, 52, 6957-6963.
87. Yatagai, A.; Krishnamurti, T.; Kumar, V.; Mishra, A.; Simon, A. Use of aphrodite rain gauge–based precipitation and trmm 3b43 products for improving asian monsoon seasonal precipitation forecasts by the superensemble method. Journal of Climate 2014, 27, 1062-1069.
88. Trmm. http://trmm.gsfc.nasa.gov/3b43.html
89. Wang, J.; Wolff, D.B. Evaluation of trmm ground-validation radar-rain errors using rain gauge measurements. Journal of Applied Meteorology and Climatology 2010, 49, 310-324.
90. Leitsinger, M. Drought grips parts of china, southeast asia amid dam concerns. Cable News Network 2010.
91. Zhu, Y. Hydro-engineering model on the distribution of factory buildings along the left bank of jinghong hydroelectric station. Yunnan Water Power 2002, 18, 98-101.
92. (HRF), C.H.R.F. Floods humanitarian response forum (hrf) situation report no. 06 (as of 08 november 2013); Cambodia Humanitarian Response Forum (HRF): Phnom Penh, Cambodia, 2013.
93. Pagano, T.C. Evaluation of mekong river commission operational flood forecasts, 2000–2012. Hydrology and Earth System Sciences 2014, 18, 2645-2656.

指導教授 曾國欣(Kuo-Hsin Tseng) 審核日期 2017-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明