博碩士論文 103621016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:3.147.59.42
姓名 蘇凱翊(Kai-Yi Su)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 使用群集分析分類綜觀尺度天氣型態以探討台灣北部地區午後熱對流系統局部環流結構與系統發展特性
(Classifying Synoptic Weather Type to Investigate the Relationship between Local Circulation and Characteristics of Afternoon Thunderstorm in Northern Taiwan)
相關論文
★ 土地利用型態對地表能量收支與海陸風模擬的影響★ 探討邊界層參數化對氣象與空氣污染模擬結果的影響
★ 探討土地利用型態對珠江口沿岸地區氣象模擬的影響:高污染事件日之個案分析★ 探討台灣地區在春季期間經長程傳輸所觀測之一氧化碳濃度與綜觀天氣之關係
★ 探討地表參數對台灣地區氣象模擬的影響★ 探討區域尺度氣候變遷對台灣地區氣象場及汙染物濃度模擬的影響
★ 使用CMAQ-HDDM探討台灣地區臭氧之非線性 反應及估算高臭氧區的來源貢獻量: 2011年個案分析★ 地表水文循環過程與大氣耦合作用對土壤溼度以及氣象模擬的影響
★ 使用VVM探討陸氣交換過程對台灣地區高解析氣象模擬的影響--理想個案模擬★ 台灣中部山區局部環流結構特性與其對空氣汙染物傳送過程的影響
★ 開發適用於大氣邊界層觀測的無人機系統★ 雲林地區細懸浮微粒的來源解析
★ 臺灣中部山區埔里盆地之局部環流與邊界層結構特性★ 臺灣背風渦旋特性分析及其對空氣污染物傳輸過程影響
★ 探討地下水參數化對於臺灣地表水文過程之影響★ 臺灣西南部海洋邊界層垂直結構特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
午後雷陣雨又稱為對流雨以及熱雷雨,主要降水特徵為雨時短、雨區小、強度大,並且常發生在午後,為台灣北部地區夏季主要降水來源之一。本研究主要目的為使用群集分析進行綜觀尺度天氣形態分類,藉以探討台灣北部地區午後雷陣雨氣象特性。
群集分析所使用之觀測資料,包含台灣北部地區2013年到2015年夏季(7、8及9月份)氣象局地面測站觀測資料,選取的氣象參數包含溫度、濕度、風速、風向、氣壓、降雨量以及比濕。研究方法,首先將這些氣象變數進行不同的組合,並進一步將每種組合的分類結果進行分析,找出各群集的特性,並在每個群集內製作降雨時序圖比對,再找出所有組合的最佳分類,最後進行分析與討論,以上方法可以找出午後雷陣雨和綜觀天氣型態的關係;而後將上述觀測資料重新篩選,單純挑選發生午後雷陣雨的事件,再重新進行群集分析,並與前一個群集分析分類結果進行比對。
首先,使用風速和風向觀測資料進行群集分析,分類結果顯示北部地區夏季主要盛行風場為西南、東南以及東北風,主要降雨集中在東北風、西北西風以及東南風這三個群集內。東北風的降雨主要由三種類型的天氣型態所組成,分別為颱風、冷鋒鋒面以及冷高壓所產生的東北風。西北西風和東南風相關的群集,則是包含數個颱風個案,因此降雨量較高。若於群集分析方法排除風場變數,僅使用氣壓、溫度以及相對濕度來進行分類,分類結果可分為五類,第一類屬於弱綜觀天氣型態,降雨幾近於零;第二類為溫度較低的東北風天氣型態,降雨較少且濕度較低,屬於冷高壓影響的天氣型態;第三類為低壓系統所主宰的天氣型態,主要包含華南以及南方雲雨帶、鋒面、颱風外圍環流以及熱帶低壓,這類型的降雨較多且濕度也相對較高;第四類為颱風類型,颱風中心位於台灣本島上的天氣系統;第五類屬於午後雷陣雨的天氣型態,降雨主要集中在午後,屬於弱綜觀天氣型態,整體溼度和溫度較高;第六類為上述五類少數個案的集結,同時具有上述五類所有特性。
再者,將三年夏季的觀測資料進行篩選,挑選午後雷陣雨的天數,並進行群集分析,群集分類使用的資料為U、V風場。分類結果共有三類,第一類為受到副熱帶高壓影響的東南風天氣型態,天數較少;第二類的降雨量為三個群集內最多的群集,降雨分布範圍也較廣,屬於太平洋高壓勢力減弱及南方低壓帶北移的天氣型態,北部地區主要吹東北風,發生的天數和第一類相同;第三類的天氣型態和第一類較為接近,綜觀天氣型態皆是受到副熱帶高壓影響,但是主要的風向為西南風,且發生天數的比例超過一半,降雨量和第一類相差無幾,而分類結果屬於西南風的天氣型態較容易產生午後雷陣雨。
最後,挑選一個午後雷陣雨的事件(2014年8月19日)進行個案分析,並使用中央大學移動式雷達Team-R以及文化大學為此觀測施放的探空資料進行分析,了解此個案午後雷陣雨的熱力以及動力結構。
摘要(英) Abstract
The afternoon thunderstorm system is associated with short rainfall time period, confined rainfall area and strong rainfall intensity. The objective of this study is to understand the synoptic weather patterns that are prone for the development of the afternoon thunderstorm system through cluster analysis method and at the same time, to investigate the meteorological characteristic including the local circulations and thermal structures of the afternoon thunderstorm system .
The observation data from weather stations of Central Weather Bureau (CWB) is used for cluster analysis. The data period covers the summer season (July, August and September) from 2013 to 2015. The selected meteorological variables are temperature, humidity, wind speed, wind direction, pressure, rainfall, and specific humidity. The cluster analysis using these surface meteorological variables are tested in different combinations to find out the best weather classification that can identify the characteristics of the afternoon thunderstorm system.
In first experiment, the cluster analysis was applied using U- and V- component wind to classify the weather pattern. The classification results exhibit three types of prevailing winds in northern Taiwan including the northeasterly flow, southwesterly flow, and southeasterly flow.
In second experiment, the cluster analysis was applied using pressure, temperature, and relative humidity. Five clusters are found using the above method. Cluster one and cluster five exhibit similar synoptic weather pattern for which Taiwan is under influence of sub-tropical high-pressure system. Cluster one is associated with southeasterly wind in northern Taiwan and with less rainfall. Cluster five is associated with southwesterly wind and exhibits the afternoon thunderstorm rainfall pattern. The occurrence of cluster two is less and is associated with the northeasterly wind due to the influence of the continental high-pressure system. Cluster two has less rainfall. In Cluster three, the prevailing wind is from northeast and the strength of the Pacific high-pressure system weakens. Taiwan is influence by the low-pressure system. Cluster four is associated with the highest rainfall due to the typhoons. Cluster six doesn’t have apparent characteristics.
Lastly, only cases associated with the afternoon thunderstorm are selected from three-year summertime observation data and the cluster analyzed was applied using U- and V-component wind field. Three clusters are found using the above method. The cluster one is with less occurrence and due to the influence of the sub-tropical high pressure system the dominant wind is southeasterly. The second cluster has the highest rainfall amounts and the precipitation occurs in wider area among three clusters. The dominant wind is northeasterly in northern Taiwan when Pacific high-pressure system weakens. The cluster three has similar weather pattern as the cluster one. The synoptic weather pattern is under the influence of sub-tropical high-pressure system but the dominant wind is southwesterly. The occurrence of cluster three is more than 50 percent of the days examined.
Furthermore, CWB observation data is employed to analyze an afternoon thunderstorm case (19 August 2014) and the Team-R observation data from National Central University (NCU) and sounding data from Private Chinese Culture University (PCCU) are utilized to analyze the thermal and dynamic structure of the system.

關鍵字(中) ★ 群集分析 關鍵字(英)
論文目次 目錄
摘要 i
Abstract iii
誌謝 v
目錄 vii
圖表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究動機 4
第二章 資料來源與研究方法 5
2.1 資料來源 5
2.2 研究方法 5
2.2.1群集分析 5
2.2.2綜觀風場的判定 7
2.2.3午後雷陣雨的判定 7
第三章 結果與討論 8
3.1 綜觀天氣群集分析結果 8
3.1.1實驗設計 8
3.1.2風場分類結果 8
3.1.3溫度、濕度以及氣壓分類結果 10
3.2午後雷陣雨環流結構分析 13
3.2.1實驗設計 14
3.2.2午後雷陣雨類別 14
3.2.3海陸風環流結構 16
3.2.4午後雷陣雨實驗結果與討論 22
3.3個案分析 22
3.3.1個案介紹 23
3.3.2動力結構分析 23
3.3.3熱力結構分析 24
3.3.4綜合討論 25
第四章 結論與未來展望 27
4.1 結論 27
4.2 未來展望 28
參考文獻 30
附表 33
附圖 37

?
參考文獻 參考文獻
蕭志惠,1986:海陸風引發降水可能性之探討。國立中央大學,大氣物理研究所碩士論文,131頁。

林傅堯,1996:梅雨季太平洋高壓系統影響下台灣地形與午後降水關係之研究。國立中央大學,大氣物理研究所碩士論文,241頁。

林熹閔、郭鴻基,1996:1994年南台灣夏季午後對流之研究,大氣科學,24,249-280。

施宏恩,1996:島嶼尾流之流場與湧昇特性研究-以小琉球為例。國立中山大學,海洋資源研究所碩士論文,100頁。

張惠玲,1997:台灣地區午後流降水之研究。國立中央大學,大氣物理研究所碩士論文,130頁。

楊姈桂,2000:台灣地區午後對流降水特性之分析。國立中央大學,大氣物理研究所碩士論文,120頁。

Akaeda, K., J. Reisner, and Parsons. D., 1994: The role of mesoscale and topographically induced circulations in initiating a flash flood observed during the TAMEX project. Mon. Wea. Rev. , 123, 1720-1738.

Andreas P. Weigel, Fotini K. Chow, Mathias W. Rotach, Robert L. Street, and Ming Xue, 2006: High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part II: Flow Structure and Heat Budgets. J. Appl. Meteor. Climatol., 45, 87–107.

Banacos, P. C., D. M. Schultz, 2005 : The Use of Moisture Flux Convergence in Forecasting Convective Initiation: Historical and Operational Perspectives. J. Appl. Meteor. Climatol., 20, 351–366.

Banta, R. M., and C. B. Schaaf, 1987: Thunderstorm genesis zones in the Colorado Rocky mountains as determined by traceback of geosynchronous satellite images. Mon. Wea. Rev. , 115, 463-477.

Chen, C.-C, T.-C. Chen, S.-Y. Wang, M.-C. Yen, 2007: Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei. J. Appl. Meteor. Climatol., 36, 1324–1340.

Chen, C.-C, M.-C. Yen, J.-D. Tsay, C.-C. Liao, E. S. Takle, 2014: Impact of Afternoon Thunderstorms on the Land–Sea Breeze in the Taipei Basin during Summer: An Experiment. J. Appl. Meteor. Climatol., 53, 1714–1738.

Cheng, F.-Y., Z.-M. Yang, C.-F. Ou-Yang, F. Ngan, 2013: A numerical study of the dependence of long-range transport of CO to a mountain station in Taiwan on synoptic weather patterns during the Southeast Asia biomass-burning season. Atmos. Envir., 78, 277–290.

Fisher, R. A., 1936 : The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics., 7, 179–188.

Fotini Katopodes Chow, Andreas P. Weigel, Robert L. Street, Mathias W. Rotach, and Ming Xue, 2006: High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part I: Methodology, Verification, and Sensitivity Experiments. J. Appl. Meteor. Climatol., 45, 63–86.

Hsu, S. A., 1970: Coast air circulation system: Observation and empirical model. Mon. Wea. Rev., 98, 487-509.

Hsu, C.-H., F.-Y. Cheng, 2016 : Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan. Atmos. Envir., 144, 397–408.

Jur y, M. R. and S. Chiao, 2013: Leeside Boundary Layer Confluence and Afternoon Thunderstorms over Mayaguez, Puerto Rico. J. Appl. Meteor. Climatol., 52, 439– 454.

Kossmann, M., and A. P. Sturman, 2003: Pressure-Driven Channeling Effects in Bent Valleys. Appl. Meteor. Climatol., 42, 151–158.




Lin, C.-Y., F. Chen, J. C. Huang, W.-C. Chen, Y. A. Liou, W. N. Chen, and
S. C. Liu, 2008: Urban heat island effect and its impact on boundary layer development and land–sea circulation over northern Taiwan. Atmos. Environ., 42, 5635–5649.

Lin C.-Y., W. C. Chen, P. L. Chang, and Y. F. Sheng, 2011: Impact of the urban heat island effect on precipitation over a complex geographic environment in northern Taiwan. J. Appl. Meteorol. Climatol., 50, 339–353.

MacQueen, J. B., 1967: Some methods for classification and analysis of multivariate observations. Proc. of the 5-th Berkeley Symp. On Math. Stat. and Prob., 1, 281-297.

Ngan, Fong, Daewon Byun, 2011: Classification of Weather Patterns and Associated Trajectories if High-Ozone Episodes in the Houston-Galveston-Brazoria Area during the 2005/06 TexAQS-II. J. Appl. Meteorol. Climatol., 50, 485–499.

Reisner, J., and P. K. Smolarkiewicz, 1994: Thermally forced low Froude number flow past three-dimensional obstacles. J. Atmos. Sci., 51, 117-133.

Rousseeuw, P. J., 1987: Silhouettes a graphical aid to the interpretation and validation of cluster analysis. J. Computat. Appl. Math., 20, 53–65.

Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 1154-1164.

___, and ___, 1989: Low Froude number flow past three-dimensional obstacles. Part II: Upwind flow reversal zone. J. Atmos. Sci., 47, 1498-1511.

指導教授 鄭芳怡(Fang-Yi Cheng) 審核日期 2017-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明